วันอังคารที่ 14 กรกฎาคม พ.ศ. 2552

ปิโตรเลียม

กำเนิดปิโตรเลียม
นักโบราณคดีเชื่อว่าประมาณ 2,500 ปีก่อนคริสตกาล พวกชนเผ่าบาบิโลเนียน (Babylonian) เริ่มใช้น้ำมัน (ปิโตรเลียม) เป็นเชื้อเพลิงแทนไม้และเมื่อประมาณ 1,000 ปีก่อนคริสตกาล ชาวจีนเป็นชาติแรกที่ทำเหมืองถ่านหินและขุดเจาะบ่อก๊าซธรรมชาติลึกเป็นร้อยเมตรได้ก่อนใคร

น้ำมันประกอบด้วยสารประกอบไฮโดรคาร์บอนชนิดต่าง ๆ หลายชนิดมากมายจนมีคำพูดว่าไม่มีน้ำมันจากบ่อไหนเลยในโลกที่มีการผสมผสานส่วนประกอบได้คล้ายกัน แต่จะเห็นว่าส่วนประกอบกว้าง ๆ คล้ายกัน ซึ่งตรงกันข้ามกับก๊าซธรรมชาติที่ประกอบด้วยก๊าซที่สำคัญคือ มีเทน (Methane) เป็นหลักที่เหลือซึ่งมีปริมาณน้อยกว่าได้แก่ อีเทน (Ethane) โปรเพน (Propane) และบิวเทน (Buthane) ปิโตรเลียมจัดได้ว่าเป็นผลิตภัณฑ์ทางธรรมชาติที่ได้จากการสลายตัวของสิ่งมีชีวิตทั้งพืชและสัตว์รวมกัน

ปฏิกิริยาเคมีเกิดขึ้นเรื่อย ๆ ในน้ำมันดิบที่เคลื่อนตัวเข้ามาก่อนถึงโครงสร้างกักเก็บเป็นเวลายาวนานหลายล้านปีซึ่งอาจะเป็นเหตุผลที่อธิบายได้ว่าทำไมน้ำมันจากบ่อต่าง ๆ จึงไม่เหมือนกัน ตะกอนที่ปนอินทรีย์วัตถุหรือที่จะให้น้ำมันสะสมตัวอยู่ในปัจจุบันนี้คือ ตะกอนที่มีแร่ดินเหนียวอยู่ด้วยมากขณะที่กักเก็บน้ำมันจริง ๆ คือ หินทรายซึงประกอบด้วยแร่เขี้ยวหนุมานเป็นส่วนใหญ่หรือไม่ก็เป็นหินปูนที่มีแร่แคลไซต์มากหรือพวกหินที่มีรอยแตกมากมาย จึงดูเหมือนว่าน้ำมันเกิดอยู่ที่หนึ่งและต่อมาจึงเปลี่ยนเคลื่อนย้ายไปสะสมตัวอยู่อีกที่ซึ่งความจริงการเคลื่อนย้ายตัวของน้ำมันก็มีหลักการคล้าย ๆ กับการเคลื่อนย้ายของน้ำใต้ดินหินทรายที่มีความสามารถยอมให้ของเหลวไหลผ่านสูงกว่าหินดินดานมากขึงยอมให้น้ำมันผ่านเข้ามาได้และที่สำคัญคือ แรงยึดเหนี่ยวระหว่างน้ำมันกับแร่เขี้ยวหนุมานหรือแร่แคลไซต์มีน้อยกว่าน้ำกับแร่ดังกล่าว น้ำมันจึงผ่านไปได้แต่น้ำยังคงยึดเกาะอยู่ น้ำยึดเกาะข้างเม็ดแร่อย่างมากส่วนน้ำมันอยู่ตรงกลางช่องว่างโดยไม่ยอมผสมกันและเบากว่าน้ำมาก ดังนั้นน้ำมันจึงลอยสูงขึ้นมาเจอแหล่งกักเก็บและสะสมตัวอยู่ได้เหนือน้ำใต้ดินและโอกาสที่จะสะสมอยู่ได้ในตะกอนมีเพียง 0.1% ของน้ำมันที่เกิดมา จึงไม่แปลกใจเลยที่พบน้ำมันอยู่ได้มากกว่า 60% ของปริมาณน้ำมันทั้งหมดจากหินตะกอนยุคใหม่ไม่เกิน 2.5 ล้านปีเป็นส่วนใหญ่คือมหายุคนวชีวิน (Cenozoic) ประเทศไทยเราก็เช่นกัน น้ำมันทั้งหมดเกิดอยู่ในหินยุคใหม่ ๆ ทั้งนั้น จากการขุดเจาะน้ำมันพบว่ายิ่งเจาะลึกมากเท่าใด โอกาสที่จะพบน้ำมันก็น้อยลงเท่านั้น ที่เป็นเช่นนี้อาจเป็นเพราะหินยิ่งลึกมากความพรุนยิ่งน้อยลง อัดตัวกันมากขึ้นและเกิดแรงดันใหม่น้ำมันเคลื่อนไปข้างบนได้มาก


ปริมาณคิดเป็นร้อยละของน้ำมันทั่วโลกที่พบในที่หินกักเก็บที่สำคัญ ซึ่งหินทรายเป็นหินกักเก็บได้ดีกว่าหินปูนแหล่งกำเนิดปิโตรเลียมน้ำมันและก๊าซธรรมชาติมีสถานะเป็นของเหลวและก๊าซและเบากว่าน้ำ น้ำมันผลิตได้จากบ่อน้ำมัน (oil pools) ซึ่งหมายถึงแหล่งสะสมน้ำมันและก๊าซธรรมชาติใต้ดินในแหล่งกักเก็บที่มีตัวปิดกั้นทางธรณีวิทยา บ่อน้ำมันจึงอาจเป็นคำพูดที่ใช้ผิดๆ จริงๆ แล้วไม่ใช่เป็นทะเลสาปที่มีน้ำมันแต่หมายถึง ส่วนของหินที่มีน้ำมันบรรจุอยู่เต็มช่องว่างในหินนั้น ดังนั้นบ่อน้ำมันหลายๆ บ่อที่มีลักษณะ-โครงสร้างของการกักเก็บคล้ายๆ กันหรือบ่อเดียวโดยๆ แยกจากบ่ออื่นที่ไหลออกไปอาจเรียกรวมๆ กันว่า แหล่งน้ำมัน (oil field) แหล่งน้ำมันจึงอาจประกอบด้วยบ่อที่อยู่เรียงๆ กันไปอยู่ข้างๆ กันหรืออยู่บนล่างตามแนวดิ่งก็ได้ปัจจุบันปัจจัยควบคุมการสะสมน้ำมันมีอยู่ด้วยกัน 5 ประการด้วยกัน คือต้องมีหินที่ทำหน้าที่ให้น้ำมันมายึดเกาะอยู่ได้เรียกว่า หินอุ้มน้ำมันหรือหินกักเก็บ (reservoir rock) ซึ่งมีคุณสมบัติเดิมคือ ต้องมีรูพรุนมากพอที่จะให้น้ำมันไหลผ่านได้ หินกักเก็บจะต้องถูกปิดทับด้วยชั้นหินที่ไม่ยอมให้น้ำมันไหลซึมออกไปซึ่งเรียกว่า หินปิดกั้น (roof rock) เช่นหินดินดาน ทำให้น้ำมันลอยตัวอยู่เหนือน้ำบาดาลโดยไม่หนีหายไป ทั้งหินกักเก็บและหินปิดกั้นจะประกอบขึ้นมาเป็นโครงสร้างหรือรูปแบบการกักเก็บน้ำมัน (trap หรือ trap rock) ในแบบต่างๆ กัน ในการกักเก็บที่ดีขนาดไหนก็ไม่ได้รับประกันว่าจะมีน้ำมันได้ถ้าไม่มีหินที่เป็นต้นกำเนิดน้ำมันที่เรียกว่า หินกำเนิด (source rock) ถ้าจะมีการเกิดการเสียรูปโครงสร้าง (structural deformation) เมื่อสร้างรูปแบบการกักเก็บก็ต้องเกิดขึ้นก่อนที่น้ำมันจะหลบหนีออกจากหินกักเก็บจนหมด
ปิโตรเลียม (petroleum จากภาษากรีก petra – หิน และ elaion – น้ำมัน หรือภาษาละติน oleum – น้ำมัน ) หรือน้ำมันดิบ บางครั้งเรียกอย่างไม่เป็นทางการว่า ทองคำสีดำ หรือ "น้ำชาเท็กซัส" คือของเหลวขุ่นข้นสีน้ำตาลเข้มหรือเขียวเข้ม
ปิโตรเลียม เป็นทรัพยากรธรรรมชาติที่สามารถพบได้ในชั้นหินในบางพื้นที่บนเปลือกโลกและประกอบไปด้วยสารประกอบโครงสร้างซับซ้อนของไฮโดรคาร์บอน โดยส่วนมากมักจะเป็นอัลเคนแต่อาจจะแพร่หลายในรูปลักษณะ และสารประกอบ โดยมากปิโตรเลียมนั้นจะนำมาใช้ในการผลิตน้ำมันเชื้อเพลิง เช่น น้ำมันเครื่องยนต์และแก๊ซโซลีน ผลผลิตทั้งสองนั้นเป็นแหล่งพลังงานพื้นฐานของโลกในขณะนี้
ปิโตรเลียมเป็นวัตถุดิบสำหรับผลิตภัณฑ์เคมีมากมาย รวมไปถึงสารละลาย ปุ๋ย ยากำจัดศัตรูพืช และพลาสติก

แหล่งปิโตรเลียมของไทย และเขตสัมปทานในประเทศเพื่อนบ้าน
อ่าวไทย
แหล่งบงกช • แหล่งบรรพต • แหล่งเอราวัณ • แหล่งฟูนาน • แหล่งโกมินทร์ • แหล่งจักรวาล • แหล่งจักรวาลตะวันตก • แหล่งกะพง • แหล่งไพลิน • แหล่งนวมินทร์ (โครงการอาทิตย์) • แหล่งปลาทอง • แหล่งปลาแดง • แหล่งปลาหมึก • แหล่งสตูล • แหล่งสตูลใต้ • แหล่งตราด • แหล่งทานตะวัน • แหล่งเบญมาศ • แหล่งสุราษฎร์ • แหล่งยะลา • แหล่งMTJDA-B17(ไทย-มาเลเซีย) • แหล่งMTJDA-A18(ไทย-มาเลเซีย)

บนบก
แหล่งสิริกิติ์ • แหล่งปรือกระเทียม • แหล่งหนองตูม • แหล่งบึงหญ้า • แหล่งบึงม่วง • แหล่งอู่ทอง • แหล่งกำแพงแสน • แหล่งวิเชียรบุรี • แหล่งศรีเทพ • แหล่งน้ำพอง
อ่าวเมาะตะมะ
แหล่งยาดานา(สหภาพพม่า) • แหล่งเยตากุน(สหภาพพม่า)


การเกิดปิโตรเลียม
.....เรารู้จักผลิตภัณฑ์จากปิโตรเลียมในรูปแบบต่าง ๆ เช่น แก๊สหุงต้ม น้ำมันก๊าดน้ำมันเบนซินยางมะตอยแต่เราไม่เคยเห็นปิโตรเลียมตามธรรมชาติเลย
....ปิโตรเลียม ประกอบด้วยก๊าซธรรมชาติเหลวและน้ำมันดิบ ซึ่งเป็นของเหลวข้นๆสีดำๆก๊าซธรรมชาติเหลวจะอยู่ชั้นบนของปิโตรเลียมและเกิดจากการกลั่นตัวตามธรรมชาติของน้ำมันดิบ
....ปิโตรเลียมเกิดจากซากพืชซากสัตว์ตายทับถมกันภายใต้พื้นพิภพเป็นเวลาล้าน ๆ ปี จนกลายเป็นชั้นหินด้วยความกดดันสูงอันเกิดจากการเคลื่อนตัวและหดตัวของชั้นหินและอุณหภูมิใต้พิภพ สารอินทรีย์เหล่านี้ส่วนใหญ่เป็นธาตุไฮโดรเจนและไฮโดรคาร์บอนจะมีการเปลี่ยนแปลงทางเคมีอย่างช้า ๆ แปรสภาพเป็นก๊าซและน้ำมันดิบสะสมและซึมผ่านชั้นหินที่เป็นรูพรุน เช่น ชั้นหินทรายและชั้นหินปูนไปสู่แอ่งหินที่ต่ำกว่า จากนั้นค่อย ๆ สะสมตัวอยู่ระหว่างชั้นหินที่หนาแน่น ซึ่งไม่สามารถซึมผ่านไปได้อีก โดยปกติปริมาณการสะสมตัวจะมี 5.25 % ของปริมาตรหิน เนื่องจากปิโตรเลียมถูกบีบอัดด้วยชั้นหินต่าง ๆ มันจะพยายามแทรกตัวขึ้นมายังผิวโลกตามรอยแตกของชั้นหิน เว้นแต่ว่ามันจะถูกปิดกั้นด้วยชั้นหินเนื้อแน่น ซึ่งทำให้มันถูกกักไว้ใต้ผิวโลก.... ลักษณะโครงสร้างทางธรณีวิทยาของชั้นหินใต้ผิวโลกที่เหมาะสมในการเกิดปิโตรเลียม คือ ชั้นหินรูปโค้งประทุนคว่ำ (anticlinal trap)โครงสร้างรูปรอยเลื่อนของชั้นหิน (fault trap) โครงสร้างรูปโดม (domal trap) และโครงสร้างรูปประดับชั้น(stratigraphic trap)
.....โครงสร้างรูปโค้งประทุนคว่ำ เกิดจากการหักงอของชั้นหิน ทำให้ชั้นหินมีรูปร่างโค้งคล้ายกะทะคว่ำหรือหลังเต่าน้ำมันและแก๊สจะเคลื่อนเข้าไปรวมตัวกันอยู่ในส่วนโค้งก้นกะทะ โดยมีชั้นหินเนื้อแน่นปิดทับอยู่
......โครงสร้างรูปประดับชั้น สามารถเกิดขึ้นได้หลายรูปแบบ ขึ้นอยู่กับการเปลี่ยนแปลงของผิวโลกในอดีต ชั้นหินกักเก็บน้ำมันจะถูกล้อมเป็นกะเปาะอยู่ระหว่างชั้นหินเนื้อแน่น
......โครงสร้างรูปโดม เกิดจากการดันตัวของชั้นหินเกลือ ผ่านชั้นหินกักเก็บน้ำมันซึ่งตามปกติจะเป็นรูปโดม น้ำมันและแก๊สจะสะสมอยู่ด้านข้างของโดมชั้นเกลือ
......โครงสร้างรูปรอยเลื่อน เกิดจากการหักงอของชั้นหิน ทำให้ชั้นหินเคลื่อนไปคนละแนว การที่น้ำมันและแก๊สถูกกักเก็บอยู่ได้ เพราะมีชั้นหินเนื้อแน่นเลื่อนมาปิดชั้นหินที่มีรูพรุนทำให้น้ำมันและแก๊สถูกกักเก็บอยู่ในช่องที่ปิดกั้น

การกลั่นปิโตรเลียม
.....ปิโตรเลียมหรือน้ำมันดิบและก๊าซธรรมชาติที่ได้จากหลุมผลิตที่เจาะพบใต้พิภพ จะต้องผ่านกรรมวิธีก่อนนำมาใช้ เช่น ปิโตรเลียมจากฐานขุดเจาะในทะเลจะส่งผ่านไปแยกแก๊ส น้ำและสิ่งสกปรกออกจากน้ำมันดิบแล้วจึงถูกส่งผ่านไปยังสถานีแยกปิโตรเลียมที่ชายฝั่งที่สถานีนี้ปิโตรเลียมจะถูกแปรสภาพให้เป็นผลิตภัณฑ์สำเร็จรูปชนิดต่าง ๆ ตามต้องการเพื่อความสะดวกและเหมาะสมต่อการใช้ประโยชน์ การแยกน้ำมันดิบคือการแยกส่วนประกอบน้ำมันดิบด้านกายภาพ ซึ่งส่วนใหญ่จะแยกโดยวิธีการกลั่นลำดับส่วนซึ่งใช้หลักนำน้ำมันดิบมากลั่นในหอกลั่นบรรยากาศ น้ำมันดิบจะถูกแยกตัวออกเป็นน้ำมันสำเร็จรูปต่าง ๆ ที่มีช่วงจุดเดือดต่าง กันนั่นคือ สารประกอบไฮโดรคาร์บอนชนิดต่าง ๆ ที่รวมอยู่ในน้ำมันดิบ จะมีระดับการกลั่นที่อุณหภูมิแตกต่างกันตั้งแต่ลบ 157 องศาเซลเซียส ขึ้นไปจนถึงหลายร้อยองศาเซลเซียส
....กระบวนการกลั่นแยกส่วน ปิโตรเลียมจะถูกส่งผ่านเข้าไปในท่อเหล็กซึ่งเรียงอยู่เป็นแถวในเตาเผาและมีความร้อนขนาด315 - 371 องศาเซลเซียส (600 - 700 องศาฟาเรนไฮต์) หลังจากนั้น น้ำมันดิบและไอน้ำร้อนจะไหลผ่านไปในหอกลั่นบรรยากาศ ซึ่งมีถาดเรียงกันเป็นชั้น ๆ หลายสิบชั้น ไอร้อนที่จะกลั่นตัวเป็นของเหลวในถาดชั้นใด ตามอุณหภูมิของจุดเดือดของน้ำมันในส่วนนั้น ชั้นยอดสุดซึ่งอุณหภูมิต่ำสุดจะเป็นแก๊ส รอง ๆ ลงไปจะเป็นเบนซิน น้ำมันก๊าด น้ำมันดีเซล น้ำมันเตาน้ำมันหล่อลื่น และยางมะตอย ตามลำดับ
.....สำหรับก๊าซธรรมชาติจะนำมาแยกออกเป็นแก๊สชนิดต่าง ๆ เช่น อีเทน (Ethane) ใช้เป็นวัตถุดิบทำอุตสาหกรรมเปโตรเคมีคัลเพื่อผลิตเคมีภัณฑ์ชนิดต่าง ๆ โพรเพน (propane) และบิวเทน (butane)แยกเป็นแก๊สปิโตรเลียมเหลวหรือแก๊สหุงต้ม (liquified petroem gas-LPG)
ผลิตภัณฑ์ปิโตรเลียม
.....ในที่นี้จะกล่าวถึงผลิตภัณฑ์ปิโตรเลียมที่เกี่ยวข้องกับพลังงานเท่านั้น คือ แก๊ส L.P.G.หรือแก๊สหุงต้มน้ำมันเบนซินน้ำมันก๊าด น้ำมันดีเซล และน้ำมันเตา
.....แก๊ส L.P.G. หรือแก๊สหุงต้ม เป็นผลิตภัณฑ์ที่มีจุดเดือดต่ำมาก มีสภาพเป็นแก๊สในอุณหภูมิห้องดังนั้น ในการเก็บรักษาต้องเพิ่มความดัน หรือลดอุณหภูมิให้ก๊าซปิโตรเลียมเปลี่ยนสภาพเป็นของเหลว เพื่อความสะดวกในการเก็บรักษา แก๊สนี้เป็นแก๊สผสมระหว่างก๊าซโพรเพน ซึ่งมีจำนวนคาร์บอน 3 อะตอม กับก๊าซบิวเทน ซึ่งมีจำนวนคาร์บอน 4 อะตอม เมื่อเวลาลุกไหม้จะให้ความร้อนสูง และมีเปลวที่สะอาด ปกติไม่มีสีไม่มีกลิ่น แต่เพื่อให้เป็นที่สังเกตง่ายเมื่อรั่ว ผู้ผลิตจึงใส่กลิ่นเข้าไป ประโยชน์ ใช้เป็นแก๊สหุงต้ม เป็นเชื้อเพลิงสำหรับรถยนต์รวมทั้งเตาเผา เตาอบต่าง ๆ
.....น้ำมันเบนซิน (gasoline) เป็นเชื้อเพลิงที่ใช้กับเครื่องยนต์มาก โดยใช้จุดระเบิดที่หัวเทียน น้ำมันเบนซินประกอบด้วยสารประกอบไฮโดรคาร์บอนชนิดหนึ่งมีจำนวน 8 อะตอมใน 1 โมเลกุล เรียกว่า ไอโซออกเทน น้ำมันเบนซินที่มีไอโซออกเทนบริสุทธิ์จะมีสมบัติในการทำงานกับเครื่องยนต์ดีมากเราเรียกว่ามีออกเทนนัมเบอร์เป็น 100 จะทำให้เครื่องยนต์เดินเรียบ เบนซินชนิดนี้จะมีราคาแพง หากน้ำมันเบนซินที่มีไฮโดรคาร์บอนน้อยกว่า 8 อะตอมใน1 โมเลกุล มีค่าออกเทนนัมเบอร์ต่ำ จะทำให้มีราคาถูก เพราะการเผาไหม้เชื้อเพลิงไม่ดี จึงมีการเติมสารบางชนิดลงไปในเบนซินคุณภาพต่ำเพื่อให้มีคุณภาพดีใกล้เคียงกับเบนซินที่มีออกเทนนัมเบอร์สูง สารที่นิยมเติมกันมากคือ เตตระเอธิลเลต ซึ่งประกอบด้วยตะกั่วจะมีผลต่อมลภาวะอากาศ หากใช้สารเมทิลเทอร์-เธียรีมิวทิลอีเธน หรือเอ็มทีบีอีเติมแทน จะไม่ทำให้เกิดมลภาวะ และจะทำให้เบนซินมีคุณภาพดีขึ้นเช่นกัน
.....น้ำมันก๊าด (kerosene) เป็นผลิตภัณฑ์หลักของอุตสาหกรรมปิโตรเลียมในระยะแรก ๆ เดิมน้ำมันก๊าดใช้จุดตะเกียงเท่านั้น แต่ปัจจุบัน น้ำมันก๊าดใช้ประโยชน์อย่างอื่นได้หลายประการ เช่น ใช้เป็นส่วนผสมสำหรับยาฆ่าแมลง สีทา น้ำมันขัดเงา และเป็นส่วนผสมของน้ำยาทำความสะอาดในด้านการเกษตรให้กำลังรถแทรกเตอร์ และใช้เป็นเชื้อเพลิงเผาอุตสาหกรรมเครื่องเคลือบดินเผา
.....น้ำมันเชื้อเพลิงดีเซล (Diesel) ใช้กับเครื่องยนต์ที่มีมูลฐานการทำงานแตกต่างจากเครื่องยนต์เบนซิน เพราะต้องการความร้อนที่เกิดจากการอัดอากาศอย่างสูงในลูกสูบ เชื้อเพลิงดีเซลใช้กับเครื่องกำเนิดไฟฟ้า รถบรรทุก รถโดยสาร รถแทรกเตอร์ หัวจักรรถไฟ และเรือประมง
.....น้ำมันเตา (fuel oils) เป็นเชื้อเพลิงสำหรับเตาหม้อน้ำและเตาเผา หรือเตาหลอมในโรงงานอุตสาหกรรม เครื่องกำเนิดไฟฟ้าขนาดใหญ่ เครื่องยนต์เรือเดินสมุทร น้ำมันเตามี 3 ชนิด คือ1. น้ำมันเตาอย่างเบามีความหนืดต่ำใช้กับหม้อน้ำขนาดเล็ก2. น้ำมันเตาอย่างกลางมีความหนืดปานกลางใช้กับหม้อน้ำขนาดกลาง3. น้ำมันเตาอย่างหนักมีความหนืดสูงใช้กับเตาเผาในอุตสาหกรรมผลิตปูน

การใช้พลังงานปิโตรเลียมอย่างประหยัดและถูกวิธี
.....ประโยชน์ของพลังงานปิโตรเลียมมีทั้งทางตรงและทางอ้อม ทางตรงคือ การนำพลังงานปิโตรเลียมมาใช้กับยวดยานพาหนะและเครื่องมือเครื่องใช้ชนิดต่าง ๆทางอ้อมคือ การนำพลังงานปิโตรเลียมมาผลิตกระแสไฟฟ้าเพื่อใช้ในอาคารบ้านเรือนและโรงงานอุตสาหกรรม..... การใช้พลังงานปิโตรเลียมจึงควรใช้อย่างประหยัดและถูกวิธี เพราะพลังงานปิโตรเลียมเป็นพลังงานที่เมื่อใช้แล้วจะหมดสิ้นไปจากโลก และพลังงานปิโตรเลียมเป็นพลังงานที่ติดไฟง่าย จึงมักเป็นสาเหตุที่ทำให้เกิดเพลิงไหม้เนือง ๆ
.....การใช้พลังงานปิโตรเลียมทางตรงอย่างประหยัดและถูกวิธี มีหลักการที่สำคัญ ๆ ดังนี้คือ
......1. การบำรุงรักษาเครื่องจักรกล เครื่องยนต์ ให้สม่ำเสมอ ใช้ผลิตภัณฑ์หล่อลื่นให้เหมาะสม ทำความสะอาดเครื่องยนต์ให้ถูกวิธี ใช้งานตามความสามารถและใช้อย่างถนอม ปรับแต่งเครื่องยนต์ เช่น ตั้งศูนย์ปรับแต่งรอบเผาไหม้ เป็นต้น
......2. เลือกใช้น้ำมันให้เหมาะสมกับกำลังเครื่องยนต์ หลีกเลี่ยงเชื้อเพลิงที่อาจก่อให้เกิดอันตรายได้ เช่น การใช้แก๊สกับเครื่องยนต์อาจเกิดอันตรายง่ายเพราะไวไฟกว่าน้ำมันเบนซิน เป็นต้น
......3. หลีกเลี่ยงวัสดุติดไฟหรือการกระทำใด ๆ ที่ประมาทอาจก่อให้เกิดเพลิงไหม้ได้ กำหนดสถานที่เก็บเชื้อเพลิงให้ปลอดภัยที่สุด
......4. การใช้แก๊สหุงต้มควรเลือกถัง หัวเตาที่ได้มาตรฐาน หมั่นตรวจสอบรอยรั่วและปิดให้เรียบร้อยหลังจากใช้งานเสร็จแล้ว......การใช้พลังงานปิโตรเลียมทางอ้อมอย่างประหยัดและถูกวิธี มีหลักการที่สำคัญ ๆ ดังนี้คือ
......1. สำรวจดูเครื่องใช้ไฟฟ้าภายในบ้านว่ามีอะไรบ้าง เพื่อทราบจำนวนเครื่องใช้ไฟฟ้าที่เหมาะสมกับความจำเป็น
......2. สำรวจดูเครื่องใช้ไฟฟ้าแต่ละตัว เพื่อให้ทราบว่าแต่ละตัวมีขนาดกำลังไฟฟ้ากี่วัตต์ ถ้าเครื่องใช้ไฟฟ้าชนิดใดมีวัตต์สูงจะกินไฟมาก ถ้ามีวัตต์ต่ำจะกินไฟน้อยควรสนใจเครื่องใช้ที่วัตต์สูง ๆ เป็นกรณีพิเศษ เพื่อหาทางประหยัด รู้ได้อย่างไรว่าเครื่องใช้ไฟฟ้ามีกำลังไฟฟ้ากี่วัตต์
......3. เลือกใช้อุปกรณ์หรือเครื่องใช้ไฟฟ้าที่มีประสิทธิภาพและขนาดที่เหมาะสมกับการใช้งานในบ้าน เช่น ควรใช้หลอดฟลูออเรสเซนต์แทนการใช้หลอดไส้เพราะประหยัดไฟฟ้ากว่า
......4. เมื่อเลิกใช้ไฟฟ้าควรปิดสวิตช์หรือถอดปลั๊กทันที
......5. ไม่ควรใช้เครื่องไฟฟ้าพร้อม ๆ กันหลายตัว ทำให้เสียค่าไฟฟ้าเพิ่มขึ้น และอาจทำให้สายไฟฟ้าในบ้านร้อนจนเกิดเพลิงไหม้ได้
......6. บำรุงรักษาและหมั่นทำความสะอาดอุปกรณ์เครื่องใช้ไฟฟ้าอย่างสม่ำเสมอ

พอลิเมอร์

พอลิเมอร์
พอลิเมอร์ (อังกฤษ: polymer) ความหมายของพอลิเมอร์นั้นก็มาจากรากศัพท์กรีกสำคัญ 2 คำ คือ Poly (จำนวนมาก) และ Meros (ส่วน หรือ หน่วย) พอลิเมอร์เป็นสารโมเลกุลขนาดใหญ่ (Macromolecule) พอลิเมอร์จะประกอบไปด้วยหน่วยซ้ำกัน (repeating unit) ของมอนอเมอร์ (Monomer) หลายๆหน่วยมาทำปฏิกิริยากัน มอนอเมอร์นี้จัดเป็นสารไมโครโมเลกุล (Micromolecule) ชนิดหนึ่ง พอลิเมอร์ที่ประกอบด้วยหน่วยย่อยหรือมอนอเมอร์ชนิดเดียวกันทั้งหมด จัดเป็นโฮโมพอลิเมอร์ (Homopolymer) แต่ถ้ามีมอนอเมอร์ต่างกันตั้งแต่ 1 ชนิดขึ้นไป จัดเป็นโคพอลิเมอร์ (Copolymer) สารบางอย่างที่มีสมบัติอย่างพอลิเมอร์ เช่น สารพวกไขมันที่มีแต่ละหน่วยที่ไม่ซ้ำกันนั้นจะเป็นเพียงแค่สารแมคโครโมเลกุลเท่านั้น ไม่จัดเป็นพอลิเมอร์
พอลิเมอร์มีทั้งที่เกิดเองในธรรมชาติ (Natural polymer) และพอลิเมอร์สังเคราะห์ (Synthetic polymer) ตัวอย่างของ โพลิเมอร์ธรรมชาติ ได้แก่ แป้ง เซลลูโลส โปรตีน กรดนิวคลีอิก และยางธรรมชาติ ส่วนพอลิเมอร์สังเคราะห์ เช่น พลาสติก เส้นใย โฟม และกาว พอลิเมอร์ทั้งสองชนิดนี้เข้ามามีบทบาทมากในชีวิตประจำวัน เราต้องใช้ประโยชน์จากพอลิเมอร์เพราะพอลิเมอร์แต่ละชนิดมีสมบัติต่างกัน จึงนำหน้าที่หรือนำไปใช้งานที่ต่างกันได้
พอลิเมอร์ที่เป็นที่นิยมใช้มากที่สุดคือพลาสติก ซึ่งเป็นคำที่ใช้อ้างถึงกลุ่มของวัสดุธรรมชาติและสังเคราะห์กลุ่มใหญ่ที่มีคุณสมบัติและการใช้งานต่างกัน พอลิเมอร์ธรรมชาติเช่นชแล็กและอำพันที่ใช้มาเป็นเวลากว่าศตวรรษ พอลิเมอร์ชีวภาพ เช่น โปรตีนและกรดนิวคลีอิกที่มีบทบาทสำคัญในกระบวนการทางชีวภาพ พอลิเมอร์ธรรมชาติอื่นๆ เช่นเซลลูโลสที่เป็นองค์ประกอบหลักของกระดาษและไม้ พอลิเมอร์สังเคราะห์ที่เป็นที่รู้จักกันดี ได้แก่ บาเกไลต์, นีโอพรีน, ไนลอน, พีวีซี, พอลิสไตรีน, พอลิอคริโลไนไตรล์ และพีวีบี การศึกษาเกี่ยวกับพอลิเมอร์ได้แก่ เคมีพอลิเมอร์, ฟิสิกส์พอลิเมอร์และวิทยาศาสตร์พอลิเมอร์
พอลิเมอร์สังเคราะห์ในปัจจุบันมีการประยุกต์ใช้ในอุตสาหกรรมเกือบทุกชนิด พอลิเมอร์มีการใช้ในการยึดเกาะและการหล่อลื่นอย่างกว้างขวาง เช่นเดียวกับการใช้เป็นโครงสร้างตั้งแต่ของเด็กเล่นจนถึงยานอวกาศ มีการใช้เป็นยาทางชีวภาพในฐานะเป็นตัวขนส่งยาในสิ่งมีชีวิต พอลิเมอร์เช่น พอลิ เมทิล เมทาคริเลต ที่ใช้ในกระบวนการโฟโตเรซิสในอุตสาหกรรมกึ่งตัวนำ และสารไดอิเล็กทริกโปแทสเซียมต่ำสำหรับใช้ในคอมพิวเตอร์สมรรถนะสูง ปัจจุบันยังมีการพัฒนาพอลิเมอร์ที่ยืดหยุ่นได้สำหรับอิเล็กทรอนิกส์


ชื่อ พอลิเมอร์ และ โพลิเมอร์
ในภาษาไทยมีการใช้คำว่า พอลิเมอร์ และ โพลิเมอร์ โดยปัจจุบันราชบัณฑิตยสถานกำหนดว่าให้ใช้คำว่า "พอลิเมอร์"


การเรียกชื่อพอลิเมอร์แบบมาตรฐาน
มีการเรียกชื่อพอลิเมอร์หลายวิธี พอลิเมอร์ที่ใช้ทั่วไปส่วนใหญ่ใช้ชื่อสามัญที่เคยใช้ในอดีตมากกว่าชื่อที่ตั้งตามแบบมาตรฐาน ทั้งสมาคมเคมีอเมริกันและไอยูแพกได้กำหนดการตั้งชื่อแบบมาตรฐานซึ่งมีความคล้ายคลึงกันแต่ไม่เหมือนกันทั้งหมด ชื่อที่เป็นมาตรฐานทั้งสองระบบเป็นชื่อที่แสดงถึงชนิดของหน่วยย่อยที่ประกอบเป็นพอลิเมอร์มากกว่าจะบอกถึงธรรมชาติของหน่วยที่ซ้ำๆกันในสาย ตัวอย่างเช่น พอลิเมอร์ที่สังเคราะห์จากเอทิลีนเรียกว่าพอลิเอทิลีน ยังคงลงท้ายด้วย –อีน แม้ว่าพันธะคู่จะหายไประหว่างกระบวนการเกิดพอลิเมอร์


สูตรโครงสร้างของพอลิเมอร์
พอลิเมอร์ที่พอไม่ว่าจากในธรรมชาติ และที่สังเคราะห์ขึ้น มีโครงสร้างได้หลายรูปแบบ ทั้งนี้ขึ้นกับการเข้าเกาะของมอนอเมอร์ จึงทำให้พอลิเมอร์มีโครงสร้างอยู่ 3 รูปแบบด้วยกัน คือ
1.พอลิเมอร์สายตรง (Linear polymer) พอลิเมอร์ชนิดนี้จะเป็นโซ่ตรงยาว ถ้าให้ A และ B แทนมอนอเมอร์ โครงสร้างอย่างง่ายของโฮโมพอลิเมอร์จะเป็นดังนี้
A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A linear homopolymer


ส่วนโคพอลิเมอร์มีรูปแบบดังนี้
1.A-B-A-B-A-B-A-B-A-B Alternating copolymer (เป็นพอลิเมอร์ ที่มีมอนอเมอร์ A และ B เรียงสลับกันเป็นช่วง หน่วยต่อหน่วย)
2.A-A-B-B-B-B-A-A-A-A Block copolymer (เป็นกลุ่มของมอนอเมอร์ A และ B ที่เรียงสลับกันเป็นกลุ่ม)
3.A-A-A-B-A-B-A-A-B-B Random copolymer (เป็นมอนอเมอร์ A และ B เรียงสลับกันอย่างอิสระ)
2.พอลิเมอร์กิ่งสาขา (graft polymer) พอลิเมอร์ชนิดนี้จะมีส่วนประกอบสองส่วน คือ ส่วนที่เป็นโซ่หลัก และส่วนที่เป็นโซ่กิ่ง โดยโซ่หลักจะต้องประกอบด้วยมอนอเมอร์ชนิดเดียวเท่านั้น ส่วนมอนอเมอร์อีกชนิด จะเป็นโซ่กิ่ง
3.พอลิเมอร์ร่างแห (Cross-link polymer) เป็นพอลิเมอร์ที่เป็นร่างแหมีสายหลายสายเชื่อมต่อกัน ซึ่งเป็นได้ทั้งโฮโมพอลิเมอร์และโคพอลิเมอร์


พอลิเมอร์สังเคราะห์
การสังเคราะห์พอลิเมอร์เป็นกระบวนการของการรวมโมเลกุลขนาดเล็กๆที่เป็นหน่วยย่อยเข้าด้วยกันด้วยพันธะโควาเลนต์ ในระหว่างกระบวนการเกิดพอลิเมอร์ หมู่ทางเคมีบางตัวจะหลุดออกจากหน่วยย่อย หน่วยย่อยในพอลิเมอร์จะเป็นหน่วยซ้ำๆกัน
การสังเคราะห์ในห้องแลบ วิธีการในห้องแลบแบ่งได้เป็นสองกลุ่มคือการสังเคราะห์แบบควบแน่นและการสังเคราะห์แบบเติม อย่างไรก็ตาม วิธีการทีใหม่กว่าเช่นการสังเคราะห์แบบของเหลว ไม่สามารถจัดเข้าในกลุ่มใดได้ ปฏิกิริยาการสังเคราะห์พอลิเมอร์อาจเกิดขึ้นโดยมีหรือไม่มีตัวเร่งก็ได้ ในปัจจุบันมีการศึกษาทางด้านการสังเคราะห์พอลิเมอร์ธรรมชาติ เช่นโปรตีนในห้องแลบ
การสังเคราะห์ทางชีวภาพ พอลิเมอร์ธรรมชาติมีสามกลุ่มคือ พอลิแซคคาไรด์ พอลิเปบไทด์ และพอลินิวคลีโอไทด์ ในเซลล์ พอลิเมอร์เหล่านี้ถูกสังเคราะห์ด้วยเอนไซม์ เช่นการสร้างดีเอ็นเอด้วย เอนไซม์ดีเอ็นเอ พอลิเมอเรส การสังเคราะห์โปรตีนเกี่ยวข้องกับการใช้เอนไซม์ที่ซับซ้อนและเกี่ยวข้องกับการถอดรหัสทางพันธุกรรมในดีเอ็นเอ แล้วจึงถ่ายทอดรหัสจากดีเอ็นเอเป็นข้อมูลของลำดับกรดอะมิโน โปรตีนอาจถูกดัดแปลงหลังจากการแปลรหัสเพื่อให้มีโครงสร้างเหมาะสมกับการทำงาน
การดัดแปลงพอลิเมอร์ธรรมชาติ พอลิเมอร์ที่มีความสำคัญในทางการค้าหลายชนิดสังเคราะห์จากการดัดแปลงพอลิเมอร์ธรรมชาติทางเคมี ตัวอย่างเช่นปฏิกิริยาระหว่างกรดไนตริกกับเซลลูโลส เกิดเป็นไนโตรเซลลูโลส และการทำให้ยางธรรมชาติแข็งตัวโดยการเติมกำมะถัน


รูปแบบการใช้งานของพอลิเมอร์
พอลิเมอร์ที่เรามีการใช้งานในชีวิตประจำวันนั้น สามารถแบ่งออกตามลักษณะทางกายภาพได้ออกมากว้าง ๆ ได้ 4 แบบ ก็คือ
1.เส้นใย เป็นพอลิเมอร์กลุ่มที่แข็งแรงที่สุด เนื่องจากพื้นที่หน้าตัดของเส้นใยนั้นมีขนาดที่เล็กมาก ตัวพอลิเมอร์เองจึงจำเป็นต้องรับแรงในแนวแกนเส้นใยให้ได้สูงสุด เส้นใยจึงมีลักษณะทางกายภาพที่ดูเบาบาง แต่มีความแข็งแรงสูง
2.พลาสติก มีความแข็งแรงรองจากเส้นใย แม้ว่าการใช้งานพลาสติกนั้น จะมีมิติความกว้าง ยาว สูง มากกว่าเส้นใยหลายเท่า ทำให้ดูเหมือนว่าแข็งแรงกว่าเส้นใย แต่ถ้าลองนำพลาสติกไปฉีดให้มีความบางเท่าเส้นใย จะพบว่ามันแข็งแรงน้อยกว่ามาก
3.ยาง มีจุดเด่นคือความยืดหยุ่นสูง เราจึงไม่เปรียบเทียบเรื่องความแข็งแรง แต่มักจะคำนึงถึงค่าเปอร์เซ็นต์การยืดตัวก่อนขาด (elongation at break) และแรงดึงที่จุดขาด (load at break) แทน นอกจากนี้พอลิเมอร์ในกลุ่มนี้จำเป็นต้องมีการคืนตัวกลับได้ดีด้วย (recovery property) จึงต้องมีการเพิ่มแรงยึดเหนี่ยวระหว่างโซ่โมเลกุลด้วยการเชื่อมขวาง (crosslink) ซึ่งจุดที่เชื่อมขวางนี้ควรจะอยู่ห่างกันในระยะที่เหมาะสม เนื่องจากหากถี่เกินไป ยางที่ได้จะมีลักษณะแข็งไม่ยืดหยุ่น ในขณะที่ถ้าห่างเกินไป ก็จะได้ยางที่มีลักษณะนิ่มเกินไป
4.สารละลายและลาเทกซ์ ใช้งานในรูปของพอลิเมอร์ที่กระจายตัวในของเหลวอื่น ๆ ไม่ว่าจะเป็นตัวทำละลายของพอลิเมอร์เอง หรือกระจายตัวเป็นอิมัลชันในน้ำ ลักษณะการใช้งานคือเป็น กาว สีทาบ้าน เชลแล็ค หรือ สารเคลือบผิวอื่น ๆ พอลิเมอร์ในกลุ่มนี้ควรจะกระจายตัวได้ดี และมีความสามารถในการเชื่อมขวางได้ในสภาวะที่มีแสง หรือแก๊ซออกซิเจนได้ หรือไม่ก็สามารถที่จะนำตัวเองไปเกี่ยวพัน (entanglement) กับวัสดุอื่น ๆ ได้


ชนิดของพอลิเมอร์ (แบ่งตามโครงสร้างโมเลกุล)
เมื่อพิจารณาการเชื่อมโยงระหว่างสายโซ่โมเลกุล (crosslinking) เราสามารถแบ่งชนิดของพอลิเมอร์ได้เป็น 3 ชนิด ดังนี้
1.Thermoplastic polymers เป็นพอลิเมอร์สายตรงหรือกิ่ง ไม่มีการเชื่อมโยงระหว่างสายโซ่โมเลกุล ส่งผลให้สายโซ่โมเลกุลขยับตัวง่ายเมื่อได้รับแรงหรือความร้อน สามารถหลอมและไหลได้เมื่อได้รับความร้อน เป็นส่วนประกอบหลักในพลาสติกอ่อน เช่น Polyethylene ในถุงพลาสติก
2.Elastomers เป็นพอลิเมอร์ที่มีการเชื่อมโยงระหว่างสายโซ่โมเลกุลเล็กน้อย ซึ่งทำหน้าที่ดึงสายโซ่โมเลกุลกลับมาให้อยู่ในสภาพเดิม เมื่อปล่อยแรงกระทำ
3.Thermosetting polymers เป็นพอลิเมอร์ที่มีการเชื่อมโยงระหว่างสายโซ่โมเลกุลอย่างหนาแน่น ส่งผลให้สายโซ่โมเลกุลขยับตัวยากเมื่อได้รับแรงหรือความร้อน วัสดุที่มีพอลิเมอร์ชนิดนี้เป็นองค์ประกอบหลัก จึงรับแรงได้ดี และไม่หลอมเหลวเมื่อได้รับความร้อน อย่างไรก็ตาม เมื่อความร้อนสูงถึงอุณหภูมิสลายตัว (Degradation temperature) วัสดุจะสลายตัวไปเนื่องจากพันธะเคมีแตกหัก พอลิเมอร์ชนิดนี้ เป็นส่วนประกอบหลักในพลาสติกแข็ง เช่น ถ้วยชามเมลามีน หลังคาไฟเบอร์ (Thermosets เสริมใยแก้ว)


โครงสร้างของพอลิเมอร์
คุณสมบัติทางโครงสร้างของพอลิเมอร์เกี่ยวข้องกับการจัดตัวทางกายภาพของลำดับโมโนเมอร์ตลอดแกนหลักของสาย โครงสร้างทีอิทธิพลต่อคุณสมบัติอื่นๆ ของพอลิเมอร์ ตัวอย่างเช่น พอลิเมอร์สายตรงอาจจะละลายหรือไม่ละลายในน้ำขึ้นกับว่าหน่วยย่อยนั้นมีขั้วหรือไม่ แต่ในกรณีของยางธรรมชาติ ยางธรรมชาติสองชนิดอาจจะแสดงความทนทานต่างกันแม้จะมีหน่วยย่อยเหมือนกัน นักวิทยาศาสตร์พอลิเมอร์พยายามพัฒนาวิธีการเพื่ออธิบายทั้งธรรมชาติของหน่วยย่อยและการจัดเรียงตัว


การจำแนกหน่วยย่อย
การจำแนกหน่วยย่อยที่ประกอบเป็นพอลิเมอร์เป็นลักษณะแรกและสำคัญที่สุดของพอลิเมอร์ หน่วยที่ซ้ำกันจะพบซ้ำๆตลอดสายและใช้ในการจำแนกพอลิเมอร์ พอลิเมอร์ที่มีหน่วยย่อยเหมือนกันหมดเรียกว่าโฮโมพอลิเมอร์ ส่วนพอลิเมอร์ที่มีหน่วยย่อยหลายชนิดผสมกันเรียกโคพอลิเมอร์ พอลิสไตรีนเป็นตัวอย่างของโฮโมพอลิเมอร์ เอทิลีน-ไวนิลอะซีเตตเป็นตัวอย่างของโคพอลิเมอร์ พอลิเมอร์ทางชีวภาพบางชนิดประกอบด้วยหน่วยย่อยต่างกันแต่มีโครงสร้างใกล้เคียงกันเช่นพอลินิวคลีโอไทด์ที่มีหน่วยย่อยเป็นนิวคลีโอไทด์ พอลิเมอร์ที่มีหน่วยย่อยที่มีประจุจะเรียกว่าพอลิอิเล็กโทรไลต์ หน่วยย่อยของพอลิเมอร์ชนิดนี้เรียก ไอโอโนเมอร์


คุณสมบัติของพอลิเมอร์
ชนิดของคุณสมบัติของพอลิเมอร์แบ่งอย่างกว้างๆได้เป็นหลายหมวดขึ้นกับความละเอียด ในระดับนาโนหรือไมโครเป็นคุณสมบัติที่อธิบายลักษณะของสายโดยตรงโดยเฉพาะโครงสร้างของพอลิเมอร์ ในระดับกลาง เป็นคุณสมบัติที่อธิบายสัณฐานของพอลิเมอร์เมื่ออยู่ในที่ว่าง ในระดับกว้างเป็นการอธิบายพฤติกรรมโดยรวมของพอลิเมอร์ ซึ่งเป็นคุณสมบัติในระดับการใช้งาน
คุณสมบัติในการขนส่ง เป็นคุณสมบัติของอัตราการแพร่หรือโมเลกุลเคลื่อนไปได้เร็วเท่าใดในสารละลายของพอลิเมอร์ มีความสำคัญมากในการนำพอลิเมอร์ไปใช้เป็นเยื่อหุ้ม


จุดหลอมเหลว คำว่าจุดหลอมเหลวที่ใช้กับพอลิเมอร์ไม่ใช่การเปลี่ยนสถานะจากของแข็งเป็นของเหลวแต่เป็นการเปลี่ยนจากรูปผลึกหรือกึ่งผลึกมาเป็นรูปของแข็ง บางครั้งเรียกว่าจุดหลอมเหลวผลึก ในกลุ่มของพอลิเมอร์สังเคราะห์ จุดหลอมเหลวผลึกยังเป็นที่ถกเถียงในกรณีของเทอร์โมพลาสติกเช่นเทอร์โมเซตพอลิเมอร์ที่สลายตัวในอุณหภูมิสูงมากกว่าจะหลอมเหลว
พฤติกรรมการผสม โดยทั่วไปส่วนผสมของพอลิเมอร์มีการผสมกันได้น้อยกว่าการผสมของโมเลกุลเล็กๆ ผลกระทบนี้เป็นผลจากข้อเท็จจริงที่ว่าแรงขับเคลื่อนสำหรับการผสมมักเป็นแบบระบบปิด ไม่ใช่แบบใช้พลังงาน หรืออีกอย่างหนึ่ง วัสดุที่ผสมกันได้ที่เกิดเป็นสารละลายไม่ใช่เพราะปฏิสัมพันธ์ระหว่างโมเลกุลที่ชอบทำปฏิกิริยากันแต่เป็นเพราะการเพิ่มค่าเอนโทรปีและพลังงานอิสระที่เกี่ยวข้องกับการเพิ่มปริมาตรที่ใช้งานได้ของแต่ละส่วนประกอบ การเพิ่มขึ้นในระดับเอนโทรปีขึ้นกับจำนวนของอนุภาคที่นำมาผสมกัน เพราะโมเลกุลของพอลิเมอร์มีขนาดใหญ่กว่าและมีความจำเพาะกับปริมาตรเฉพาะมากกว่าโมเลกุลขนาดเล็ก จำนวนของโมเลกุลที่เกี่ยวข้องในส่วนผสมของพอลิเมอร์มีค่าน้อยกว่าจำนวนในส่วนผสมของโมเลกุลขนาดเล็กที่มีปริมาตรเท่ากัน ค่าพลังงานในการผสมเปรียบเทียบได้ต่อหน่วยปริมาตรสำหรับส่วนผสมของพอลิเมอร์และโมเลกุลขนาดเล็ก มีแนวโน้มเพิ่มขึ้นของพลังงานอิสระในการผสมสารละลายพอลิเมอร์และทำให้การละลายของพอลิเมอร์เกิดได้น้อย สารละลายพอลิเมอร์ที่เข้มข้นพบน้อยกว่าที่พบในสารละลายของโมเลกุลขนาดเล็ก ในสารละลายที่เจือจาง คุณสมบัติของพอลิเมอร์จำแนกโดยปฏิกิริยาระหว่างตัวทำละลายและพอลิเมอร์ ในตัวทำละลายที่ดี พอลิเมอร์จะพองและมีปริมาตรมากขึ้น แรงระหว่างโมเลกุลของตัวทำละลายกับหน่วยย่อยจะสูงกว่าแรงภายในโมเลกุล ในตัวทำละลายที่ไม่ดี แรงภายในโมเลกุลสูงกว่าและสายจะหดตัว ในตัวทำละลายแบบธีตา หรือสถานะที่สารละลายพอลิเมอร์ซึ่งมีค่าของสัมประสิทธิ์วิเรียลที่สองเป็นศูนย์ แรงผลักระหว่างโมเลกุลของพอลิเมอร์กับตัวทำละลายเท่ากับแรงภายในโมเลกุลระหว่างหน่วยย่อย ในสภาวะนี้ พอลิเมอร์อยู่ในรูปเกลียวอุดมคติ


การแตกกิ่ง การแตกกิ่งของสายพอลิเมอร์มีผลกระทบต่อคุณสมบัติทั้งหมดของพอลิเมอร์ สายยาวที่แตกกิ่งจะเพิ่มความเหนียว เนื่องจากการเพิ่มจำนวนของความซับซ้อนต่อสาย ความยาวอย่างสุ่มและสายสั้นจะลดแรงภายในพอลิเมอร์เพราะการรบกวนการจัดตัว โซ่ข้างสั้นๆลดความเป็นผลึกเพราะรบกวนโครงสร้างผลึก การลดความเป็นผลึกเกี่ยวข้องกับการเพิ่มลักษณะโปร่งใสแบบกระจกเพราะแสงผ่านบริเวณที่เป็นผลึกขนาดเล็ก ตัวอย่างที่ดีของผลกระทบนี้เกี่ยวข้องกับขอบเขตของลักษณะทางกายภาพของพอลิเอทิลีน พอลิเอทิลีนความหนาแน่นสูงมีระดับการแตกกิ่งต่ำ มีความแข็งและใช้เป็นเหยือกนม พอลิเอทิลีนความหนาแน่นต่ำ มีการแตกกิ่งขนาดสั้นๆจำนวนมาก มีความยืดหยุ่นกว่าและใช้ในการทำฟิล์มพลาสติก ดัชนีการแตกกิ่งของพอลิเมอร์เป็นคุณสมบัติที่ใช้จำแนกผลกระทบของการแตกกิ่งสายยาวต่อขนาดของโมเลกุลที่แตกกิ่งในสารละลาย เดนไดรเมอร์เป็นกรณีพิเศษของพอลิเมอร์ที่หน่วยย่อยทุกตัวแตกกิ่ง ซึ่งมีแนวโน้มลดแรงระหว่างโมเลกุลและการเกิดผลึก พอลิเมอร์แบบเดนดริติกไม่ได้แตกกิ่งอย่างสมบูรณ์แต่มีคุณสมบัติใกล้เคียงกับเดนไดรเมอร์เพราะมีการแตกกิ่งมากเหมือนกัน
การเติมพลาติซิเซอร์ การเติมพลาสติซิเซอร์มีแนวโน้มเพิ่มความยืดหยุ่นของพอลิเมอร์ พลาสติซิเซอร์โดยทั่วไปเป็นโมเลกุลขนาดเล็กที่มีคุณสมบัติทางเคมีคล้ายกับพอลิเมอร์และเข้าเติมในช่องว่างของพอลิเมอร์ที่เคลื่อนไหวได้ดีและลดปฏิกิริยาระหว่างสาย ตัวอย่างที่ดีของพลาสติซิเซอร์เกี่ยวข้องกับพอลิไวนิลคลอไรดหรือพีวีซี พีวีซีที่ไม่ได้เติมพลาสติซิเซอร์ใช้ทำท่อ ส่วนพีวีซีที่เติมพลาสติซิเซอร์ใช้ทำผ้าเพราะมีความยืดหยุ่นมากกว่า


ที่มา http://th.wikipedia.org/wiki/%E0%B8%9E%E0%B8%AD%E0%B8%A5%E0%B8%B4%E0%B9%80%E0%B8%A1%E0%B8%AD%E0%B8%A3%E0%B9%8C

สารชีวโมเลกุล

สารชีวโมเลกุล


เป็นรูป 3 มิติ แสดงโครงสร้าง ไมโอโกลบิน, แสดงสี แอลฟ่า เฮลิกซ์ เป็นโปรตีน ตัวแรกที่ตรวจสอบและค้นพบจากเครื่อง X-ray crystallography โดย Max Perutz และ Sir John Cowdery Kendrew ในปี 1958, ซึ่งได้รับรางวัลโนเบลสาขาเคมี

สารชีวโมเลกุล (อังกฤษ: biomolecule) หมายถึง สารอินทรีย์ที่สิ่งมีชีวิตสังเคราะห์ขึ้นเท่านั้น เช่น ไขมัน น้ำมัน โปรตีน คาร์โบไฮเดรต กรดนิวคลีอิก จัดเป็นองค์ประกอบพื้นฐานของอาหารที่จำเป็นต่อร่างกาย มีโมเลกุลตั้งแต่ขนาดเล็กจนถึงขนาดใหญ่มาก มีธาตุไฮโดรเจนและคาร์บอนเป็นองค์ประกอบหลักแต่ละชนิดมีโครงสร้าง สมบัติและปฏิกิริยาที่ต่างกัน ทำให้มีหน้าทีและประโยชน์ต่อร่างกายแตกต่างกันไป
ประโยชน์
ชีวโมเลกุลมีความจำเป็นสำหรับการดำรงอยู่ของชีวิต ตัวอย่างเช่นมนุษย์ มีผิวหนังและขน ส่วนประกอบหลักของขนคือเคอราติน (keratin) ที่เกิดจากการจับกลุ่มกันเป็นก้อนของโปรตีน ซึ่งตัวมันเองก็เป็นพอลิเมอร์ที่ถูกสร้างจากกรดอะมิโน โดยกรดอะมิโนนั้นเปรียบเสมือนก้อนอิฐที่สำคัญในธรรมชาติที่จะประกอบ กันเป็นโมเลกุล ใหญ่ รูปแบบของก้อนอิฐอีกตัวหนึ่งคือ นิวคลีโอไทด์ (nucleotide) ซึ่งมีส่วนประกอบที่สำคัญ 3 ส่วนคือ
พูรีน (purine) หรือ ไพริมิดีน(pyrimidine) ซึ่งเป็นด่าง
น้ำตาล เพนโตส
ฟอสเฟตกรุป
นิวคลีโอไทด์เหล่านี้มีหน้าที่สร้าง กรดนิวคลีอิก (nucleic acid)
ความหมายของสารชีวโมเลกุล
ลักษณะที่สำคัญของสารชีวโมเลกุลเป็นดังนี้
ประกอบด้วยธาตุขนาดเล็ก มีมวลโมเลกุลต่ำ เช่น C, H, O, N, S, P ธาตุชนิดอื่นมีพบบ้าง (เช่น Fe, Cu, Zn) แต่จัดว่าน้อยเมื่อเทียบกับน้ำหนักของร่างกาย แต่ก็มีความจำเป็นต่อการดำรงชีวิตด้วย
เป็นสารประกอบของคาร์บอน โดยคาร์บอนจะเชื่อมต่อกันด้วยพันธะโควาเลนต์เกิดเป็นโครงร่างคาร์บอน จากนั้นอะตอมอื่นๆจะเติมเข้ามาในโครงร่างคาร์บอนนี้
อะตอมที่เติมเข้ามาเรียกว่าหมู่ฟังก์ชัน (functional group) ซึ่งเป็นตัวกำหนดลักษณะเฉพาะของโมเลกุลนั้นๆ
สารชีวโมเลกุลจะมีโครงสร้างสามมิติซึ่งมีบทบาทสำคัญในการทำงาน
สารชีวโมเลกุลส่วนใหญ่อยู่ในรูปอสมมาตร
สารชีวโมเลกุลจะเกิดจากหน่วยขนาดเล็ก (monomer) ที่มีโครงสร้างใกล้เคียงกัน จัดเรียงตัวเป็นโมเลกุลที่ใหญ่ขึ้น (polymer) การรวมตัวกันนี้ต้องใช้พลังงาน ส่วนการย่อยสลายโพลีเมอร์จะได้พลังงาน
ชีวโมเลกุลขนาดต่างๆ ที่พบในธรรมชาติมีดังนี้:
โมเลกุลขนาดเล็ก:
ลิพิด, ฟอสโฟลิพิด, ไกลโคลิพิด, สเตอรอล
ไวตามิน
ฮอร์โมน, นิวโรทรานสมิตเตอร์
คาร์โบไฮเดรต, น้ำตาล
ไดแซคคาไรด์
โมโนเมอร์:
กรดอะมิโน
นิวคลีโอไทด์
ฟอสเฟต
โมโนแซคคาไรด์
พอลิเมอร์:
เปปไทด์, โอลิโกเปปไทด์, พอลิเปปไทด์, โปรตีน
กรดนิวคลีอิก, ได้แก่ DNA, RNA
โอลิโกแซคคาไรด์, พอลิแซคคาไรด์
แมคโครโมเลกุล:
พรีออน (Prion)
เอนไซม์
คาร์โบไฮเดรต
คาร์โบไฮเดรต เป็นสารอินทรีย์ที่ประกอบด้วย ธาตุ คาร์บอน (C) ไฮโดรเจน (H) และ ออกซิเจน (O) มีโ มเลกุลตั้งแต่ขนาดเล็กจนถึงขนาดใหญ่มาก เป็นสารอาหารที่มีความสำคัญและจำเป็นต่อสิ่งมีชีวิต เนื่องจาก เป็นสารอาหารสำคัญที่ให้พลังงาน และทำหน้าที่เป็นองค์ประกอบของเซลล์ต่าง และน้ำไขข้อในสัตว์
คาร์โบไฮเดรตสามารถจำแนกตามสมบัติทางกายภาพและ ทางเคมี ได้ 2 พวก คือ
พวกที่เป็นน้ำตาล
พวกที่ไม่ใช่น้ำตาล (แป้ง และเซลลูโลส)
คาร์โบไฮเดรตสามารถจำแนกตามโมเลกุล สามารถแบ่งออกได้เป็น 3 ประเภท คือ
โมโนแซคคาไรด์ (Monosaccharide) เป็นคาร์โบไฮเดรตในรูปน้ำตาลธรรมดาที่สุด (simple sugars) ตัวอย่างของ โมโนแซคคาไรด์ คือ
1).เฮกโซส (hexose) ได้แก่
1.กลูโคส (glucose)
2.ฟรุกโตส (fructose)
3.แกแลคโตส (galactose)

2.เพนโตส (pentose) ได้แก่
1.ไรโบส (ribose)
2.ดีออกซิไรโบส (deoxyribose)

ไดแซ็กคาไรด์ (Disaccharide) เกิดจากการรวมตัวกันของ โมโนแซคคาไรด์ 2 โมเลกุลตัวอย่างของ ไดแซคคาไรด์ คือ
1.ซูโครส (sucrose)
2.มอลโตส (maltose)
3.แลคโตส (lactose)

พอลิแซ็กคาไรด์ (Polysaccharide) เป็นการเชื่อมต่อกันของโมเลกุล โมโนแซคคาไรด์ เป็นสารประกอบซับซ้อนคาร์โบไฮเดรตที่ไม่มีรสหวาน เป็นโมเลกุลขนาดใหญ่ที่มีกิ่งก้านสาขาเชื่อมต่อ ไม่ละลายน้ำ ไม่เป็นผลึก ตัวอย่างของ พอลิแซคคาไรด์ คือ
1.แป้ง (starch)
2.เซลลูโลส (cellulose)
3.ไกลโคเจน (glycogen)
ไขมัน
ไขมันประกอบด้วย คาร์บอน ไฮโดรเจน และออกซิเจน โมเลกุลของไขมัน ประกอบด้วยกรีเซอรีน 1 โมเลกุล และกรดไขมัน 3 โมเลกุล ซึ่งอาจเป็นกรดไขมันชนิดเดียวกันหรือต่างกันได้ ไขมันมีหลายชนิด แล้วแต่ชนิดของกรดไขมันที่เป็นส่วนประกอบ ไขมันในอาหาร ประกอบด้วย ไตรกลีเซอไรด์ (Triglycerides) เป็นส่วนใหญ่ และ โคเลสเตอรอล (Cholesterol) เป็นส่วนน้อย ไตรกลีเซอไรด์เมื่ออยู่ในรูปของแข็งที่อุณหภูมิห้องปกติจะเรียกว่าไขมัน(Fat) หากเป็นของเหลวที่อุณหภูมิห้องปกติจะเรียกว่าน้ำมัน(Oil)
โคเลสเตอรอล
เป็นไขมันที่ไม่จัดเป็นสารอาหาร เนื่องจากในร่างกายสร้างได้เองและเพียงพอ ไม่มีในพืช มีแต่ในสัตว์ ได้แก่ สมอง ไข่แดง หอย กุ้ง ปู เนย เครื่องในสัตว์ เป็นสารเบื้องต้นในการสร้างฮอร์โมนเพศทุกชนิด สร้างน้ำดี ฯลฯ กรดไขมันอิ่มตัวจะรวมตัวกับโคเลสเตอรอล เกาะตามผนังหลอดเลือด ทำให้เกิดการอุตัน การรับประทานกรดไขมันจำเป็น เช่น ไลโนเรอิก จะช่วยลดความเสี่ยงที่จะเกิดโรคหลอดเลือดอุดตันได้ ไตรกลีเซอไรด์เป็นไขมันที่เกิดจากปฏิกิริยาเคมีระหว่างกรดไขมันกับกลีเซอรอล เป็นส่วนใหญ่ของไขมันที่อยู่ในอาหาร และเป็นองค์ประกอบถึง 99% ในน้ำมันพืช เป็นแหล่งพลังงาน ที่สำคัญ
ไขมันทั่วไป เกิดจากกรดไขมันกับแอลลกอฮอล์ ในโมเลกุลไขมันจะประกอบด้วย กลีเซอรอล และกรดไขมัน แบ่งออกเป็นสามชนิดคือ
1.ไขมัน
2.น้ำมัน
3.ขี้ผึ้ง

ไขมันเชิงประกอบ
ไขมันเชิงประกอบ เป็นไขมันที่สารอื่นอยู่ด้วยนอกเหนือจาก คาร์บอน ไฮโดรเจน และออกซิเจน PO4 , N, S เช่นฟอสฟอลิปิด ส่วนใหญ่ฟอสฟอลิปิดจะเป็นองค์ประกอบหลักของเยื่อหุ้มเซลต่างๆ
ไขมันอื่นๆ ได้จาก 2 พวก แรกทำปฏิกิริยากัน
กรดไขมัน

กรดไขมัน เป็นกรดที่เกิดในธรรมชาติจากการไฮโดรลิซิสไตรกลีเซอไรด์ กรดไขมันที่พบโดยทั่วไปจะมีจำนวนของคาร์บอนเป็นเลขคู่ ที่พบมากคือ 16 หรือ 18 อะตอม กรดไขมันในธรรมชาติมีประมาณ 40 ชนิด มีโครงสร้างที่ประกอบด้วยโซ่ยาวซึ่งเกิดจากธาตุคาร์บอน และหมู่คาร์บอกซิลซึ่งมีสมบัติเป็นกรด กรดไขมันแบ่งออกเป็น2ประเภท คือ
กรดไขมันอิ่มตัว (saturated fatty acids) เป็นกรดไขมันที่มีพันธะระหว่างคาร์บอนเป็นพันธะเดี่ยวทุกพันธะ กรดไขมันอิ่มตัวที่พบมากที่สุด ได้แก่ กรดสเตียริก กรดไขมันอิ่มตัวพบมากในไขมันสัตว์และน้ำมันมะพร้าว
กรดไขมันไม่อิ่มตัว (unsaturated fatty acids) เป็นกรดไขมันที่มีพันธะระหว่างคาร์บอนอย่างน้อย 1 ตำแหน่งที่เป็นพันธะคู่ กรดไขมันไม่อิ่มตัวที่พบมากที่สุด ได้แก่ กรดโอเลอิก กรดไขมันไม่อิ่มตัวพบมากในน้ำมันจากพืช สามารถใช้ไอโอดีนทดสอบได้
ฮอร์โมน (Hormones)
ฮอร์โมน ถูกผลิตใน ต่อมไร้ท่อ และถูกปลดปล่อยออกมาสู่กระแสเลือด มันมีหน้าที่หลากหลายในหลายอวัยวะประกอบด้วยการควบคุม เส้นทางการเผาผลาญ (metabolic pathway) และควบคุมกระบวนการขนส่งผ่านเมมเบรน ฮอร์โมน อาจแบ่งได้เป็น 3 กลุ่มโครงสร้างดังนี้:
สเตอรอยด์ (steroid) เป็นประเภทหนึ่งของฮอร์โมนที่มีหลายหน้าที่ และสเตอรอยด์ทุกตัวจะถูกผลิตจาก คอเลสเตอรอล
อะมีนธรรมดา หรือ กรดอะมิโน
เปปไทด์ หรือ โปรตีน
โปรตีน
โปรตีน คือ สารชีวโมเลกุลประเภทสารอินทรีย์ที่ประกอบด้วยธาตุ C, H, O, N เป็นองค์ประกอบสำคัญนอกจากนั้นยังมีธาตุอื่น ๆ เช่น S, P, Fe, Zn ทั้งนี้ขึ้นอยู่กับชนิดของโปรตีน
องค์ประกอบย่อยของโปรตีนเรียกว่ากรดอะมิโน โปรตีนและเพปไทด์ ประกอบด้วยกรดอะมิโนเรียงตัวกันเป็นสายยาวโดยมีพันธะเพปไทด์เป็นพันธะเชื่อมโยง พันธะเพปไทด์ เป็นพันธะเอไมด์ ที่เกิดจากการรวมตัวกันของหมู่คาร์บอกซิลของกรดอะมิโนตัวที่หนึ่งกับหมู่อะมิโนของกรดอะมิโนตัวถัดไปและมีการสูญเสียน้ำหนึ่งโมเลกุล
เอนไซม์
เอนไซม์เป็นโปรตีนชนิดหนึ่ง แต่เป็นโปรตีนที่ทำหน้าที่เชิงชีวภาพเฉพาะ ซึ่งทำหน้าที่เป็นตัวเร่งปฏิกิริยาในสิ่งมีชีวิต
กรดนิวคลีอิก
กรดนิวคลีอิก ( nucleic acid ) เป็นสารชีวโมเลกุลที่มีขนาดใหญ่ทำหน้าที่เก็บและถ่ายทอดข้อมูลทางพันธุ์กรรมของสิ่งมีชีวิต จากรุ่นหนึ่งไปยังรุ่นต่อไปให้แสดงลักษณะต่าง ๆ ของสิ่งมีชีวิต นอกจากนี้ยังทำหน้าที่ควบคุมการเจริญเติบโตและกระบวนการต่าง ๆ ของสิ่งมีชีวิต กรดนิวคลีอิกมี 2 ชนิดคือ DNA ( deoxyribonucleic acid ) และ RNA ( ribonucleic acid ) โมเลกุลของกรดนิวคลีอิก ประกอบด้วยหน่วยย่อยที่เรียกว่า นิวคลีโอไทด์ ( nucleotide ) โมเลกุล DNA ประกอบด้วยพอลินิวคลีโอไทด์ 2 สายเรียงตัวสลับทิศทางกันและมีส่วนของเบสเชื่อมต่อกันด้วยพันธะไฮโดรเจนโมเลกุลบิดเป็นเกลียวคล้ายบันไดเวียน ส่วนRNA เป็นพอลินิวคลีอิกเพียงสายเดียว DNA และRNA มีน้ำตาลที่เป็นองค์ประกอบต่างกันใน DNA เป็นน้ำตาลดีออกซีไรโบส ( deoxyribose sugar ) ส่วนในRNA เป็นน้ำตาลไรโบส (ribose sugar) เบสที่พบใน DNA และ RNA มีบางชนิดที่เหมือนกัน และบางชนิดต่างกัน
นิวคลีโอไซด์ และ นิวคลีโอไทด์
นิวคลีโอไซด์ เป็นโมเลกุลที่เกิดจากการเชื่อมต่อกันระหว่าง นิวคลีโอเบส(nucleobase) กับวงแหวน ไรโบส (ribose) ตัวอย่างเช่น
ไซติดีน (cytidine)
ยูริดีน (uridine)
อะดีโนซีน (adenosine)
กัวโนซีน (guanosine)
ไทมิดีน (thymidine)
อินอซีน (inosine)

นิวคลีโอไซด์สามารถจะถูก ฟอสฟอริเลต โดยเอนไซม์ ไคเนส ใน เซลล์ และได้เป็น นิวคลีโอไทด์ ซึ่งจะเป็นโมเลกุลพื้นฐานของ DNA (deoxyribonucleic acid) และRNA (ribonucleic acid)
อ้างอิง
Lehninger, A.L., Nelson, D.L., and Cox, M.M. 1993. Principle of Biochemistry. 2nd ed. New York.: Worth

ปฏิกิริยาเคมี





ปฏิกิริยาเคมี คือ ขบวนการที่สารตั้งต้นเปลี่ยนไปเป็นผลิตภัณฑ์ ในระหว่างการเกิดปฏิกิริยาเคมี ปริมาณของสารตั้งต้นย่อมลดลง ยิ่งเวลาผ่านไป ปริมาณของสารตั้งต้นก็จะยิ่งเหลือน้อยลง และปริมาณของผลิตภัณฑ์ก็จะเพิ่มมากขึ้น
ปฏิกิริยาเคมี มี 2 ประเภท คือ 1. ปฏิกิริยาคายพลังงาน (Exergonic reaction) หมายถึง ปฏิกิริยาที่เกิดขึ้นแล้วจะปล่อยพลังงานออกมามากกว่า พลังงานกระตุ้นที่ใส่เข้าไป 2. ปฏิกิริยาดูดพลังงาน (Endergonic reaction) หมายถึง ปฏิกิริยาที่เกิดขึ้นแล้วจะปล่อยพลังงานออกมาน้อยกว่า พลังงานกระตุ้นที่ใส่เข้าไป



ทฤษฎีที่อธิบายเกี่ยวกับการเกิดปฏิกิริยาเคมีCollision theory ( ทฤษฎี การชนกัน) ทฤษฎีนี้กล่าวว่า ปฏิกิริยาเกิดจากโมเลกุลของก๊าซวิ่งชนกัน และมีการถ่ายเทพลังงานให้กันละกัน โมเลกุลที่ไปชนโมเลกุลอื่นจะมีพลังงานต่ำลง ส่วนโมเลกุลที่ถูกชนจะมีพลังงานสูงขึ้นโมเลกุลที่เกิดปฏิกิริยา ได้ขึ้นอยู่กับ1. โมเลกุลวิ่งชนกันแล้วมีพลังงานสูงอย่างน้อยเท่ากับค่า Ea (พลังงานกระตุ้น หรือพลังงานก่อกัมมันต์) 2. ทิศทางการชนกัน ต้องชนกันในทิศทางที่เหมาะสม จึงจะเกิดปฏิกิริยา


ปัจจัยที่มีผลต่อปฏิกิริยาเคมี
1. ธรรมชาติของสารตั้งต้น : สารตั้งต้นบางชนิดทำปฏิกิริยาได้เร็วแต่บางชนิดทำปฏิกิริยาได้ช้า เช่น แผ่นโลหะทองแดง หรือแผ่นโลหะเงินจะทำปฏิกิริยากับออกซิเจนได้ช้ามาก แม้ว่าจะใช้เปลวไฟช่วยก็ไม่สามารถทำให้ปฏิกิริยาเกิดเร็วได้ ส่วนแผ่นโลหะแมกนีเซียมสามารถติดไฟได้เร็วมาก หรือฟอสฟอรัสขาวสามารถติดไฟได้เลยในอากาศ เป็นต้น2. ความเข้มข้นของสารตั้งต้น :สารที่มีความเข้มข้นมากจะเกิดปฏิกิริยาได้เร็วกว่าสารที่มีความเข้มข้นน้อย การเพิ่มปริมาตรโดยมีความเข้มข้นเท่าเดิมการเกิดปฏิกิริยาก็ยังคเท่าเดิม3. พื้นที่ผิวของสารตั้งตัน : การเพิ่มพื้นที่ผิวจะทำให้ปฏิกิริยาเกิดขึ้นได้เร็ว แต่จะมีผลต่อปฏิกิริยาเนื้อผสมเท่านั้นการเพิ่ม พ.ท. ผิวก็คือการเพิ่มความถี่ในการชนกันนั้นเอง4. อุณหภูมิ : การเพิ่ม อุณหภูมิ เป็นการเพิ่มพลังงานจลน์ให้แก่อนุภาค ทำให้อนุภาคเคลื่อนที่เร็วขึ้น จึงเพิ่มโอกาสการชนกัน
5. ตัวเร่ง และตัวหน่วง ปฏิกิริยา มันจะไปลด / เพิ่ม Eaของปฏิกิริยา :ตัวเร่งปฏิกิริยา(catalyst)เป็นสารที่ช่วยเร่งให้ปฏิกิริยาเกิดได้เร็วขึ้น ตัวหน่วงปฏิกิริยา(Inhibitor)เป็นสารที่เมื่อเติมลงไปในปฏิกิริยาแล้วมีผลทำให้ เกิดปฏิกิริยาได้ช้าลง หรือหยุดยั้งปฏิกิริยาได้อย่างสิ้นเชิง


ที่มา http://variety.teenee.com/science/1874.html






วันจันทร์ที่ 13 กรกฎาคม พ.ศ. 2552

พันธะ

พันธะโคเวเลนซ์คือแรงยึดเหนี่ยวภายในโมเลกุลซึ่งเกิดจากการใช้เวเลนซ์อิเล็กตรอนร่วมกันเป็นคู่ เพื่อให้จำนวนเวเลนซ์อิเล็กตรอนของธาตุคู่ร่วมพันธะทุกธาตุครบ 8 ตามกฎออกเตต ยกเว้นไฮโดรเจนซึ่งจะสร้างพันธะเพื่อจำนวนเวเลนซ์อิเล็กตรอนครบ2ธาตุที่จะสร้างพันธะโคเวเลนซ์มักจะเป็นอโลหะกับอโลหะแต่มีโลหะบางชนิด เช่น Be สามารถเกิดพันธะโคเวเลนซ์ได้

การเกิดและชนิดของพันธะโคเวเลนต์
พันธะโคเวเลนต์ (Covalent bond) มาจากคำว่า co + valence electron ซึ่งหมายถึง พันธะที่เกิดจากการใช้เวเลนซ์อิเล็กตรอนร่วมกัน ดังเช่น ในกรณีของไฮโดรเจน ดังนั้นลักษณะที่สำคัญของพันธะโคเวเลนต์ก็คือการที่อะตอมใช้เวเลนต์อิเล็กตรอนร่วมกันเป็นคู่ ๆ
-สารประกอบที่อะตอมแต่ละคู่ยึดเหนี่ยวกันด้วยพันธะโคเวเลนต์ เรียกว่า สารโคเวเลนต์
-โมเลกุลของสารที่อะตอมแต่ละคู่ยึดเหนี่ยวกันด้วยพันธะโคเวเลนต์เรียกว่าโมเลกุลโคเวเลนต์


1. การเกิดพันธะโคเวเลนต์
เนื่องจาก พันธะโคเวเลนต์ เกิดจากการใช้เวเลนต์อิเล็กตรอนร่วมกัน ซึ่งอาจจะใช้ร่วมกันเพียง 1 คู่ หรือมากกว่า 1 คู่ก็ได้
- อิเล็กตรอนคู่ที่อะตอมทั้งสองใช้ร่วมกันเรียกว่า “อิเล็กตรอนคู่ร่วมพันธะ”
- อะตอมที่ใช้อิเล็กตรอนร่วมกันเรียกว่า อะตอมคู่ร่วมพันธะ
· ถ้าอะตอมคู่ร่วมพันธะใช้อิเล็กตรอนร่วมกัน 1 คู่จะเกิดเป็นพันธะโคเวเลนต์ที่เรียกว่า พันธะเดี่ยว เช่น ในโมเลกุลของไฮโดรเจน
· ถ้าอะตอมคู่ร่วมพันธะใช้อิเล็กตรอนร่วมกัน 2 คู่จะเกิดเป็นพันธะโคเวเลนต์ที่เรียกว่า พันธะคู่ เช่น ในโมเลกุลของออกซิเจน
· ถ้าอะตอมคู่ร่วมพันธะใช้อิเล็กตรอนร่วมกัน 3 คู่จะเกิดเป็นพันธะโคเวเลนต์ที่เรียกว่า พันธะสาม เช่น ในโมเลกุลของไฮโดรเจน

จากการศึกษาสารโคเวเลนต์จะพบว่า ธาตุที่จะสร้างพันธะโคเวเลนต์ส่วนมากเป็นธาตุอโลหะกับอโลหะ ทั้งนี้เนื่องจากโลหะมีพลังงานไอออไนเซชันค่อนข้างสูง จึงเสียอิเล็กตรอนได้ยาก เมื่ออโลหะรวมกันเป็นโมเลกุลจึงไม่มีอะตอมใดเสียอิเล็กตรอน มีแต่ใช้อิเล็กตรอนร่วมกันเกิดเป็นพันธะโคเวเลนต์ อย่างไรก็ตามโลหะบางชนิดก็สามารถเกิดพันธะโคเวเลนต์กับอโลหะได้ เช่น Be เกิดเป็นสารโคเวเลนต์คือ BeCl2 เป็นต้น


2. ชนิดของพันธะโคเวเลนต์
ชนิดของพันธะโคเวเลนต์ พิจารณาจากจำนวนอิเล็กตรอนที่ใช้ร่วมกันของอะตอมคู่ร่วมพันธะ ดังนี้
ก. พันธะเดี่ยว เป็นพันธะโคเวเลนต์ที่เกิดจากอะตอมคู่สร้างพันธะทั้งสองใช้อิเล็กตรอนร่วมกัน 1 คู่ ใช้เส้น ( - ) แทนพันธะเดี่ยว



ข. พันธะคู่ เป็นพันธะโคเวเลนต์ที่เกิดจากอะตอมคู่สร้างพันธะทั้งสองใช้อิเล็กตรอนร่วมกัน 2 คู่ ใช้เส้น 2 เส้น ( = ) แทน 1 พันธะคู่ เช่นพันธะระหว่าง O ใน O2 , O กับ C ใน CO2 , C กับ H ใน C2H4



ค. พันธะสาม เป็นพันธะโคเวเลนต์ที่เกิดจากอะตอมคู่สร้างพันธะทั้งสองใช้อิเล็กตรอนร่วมกัน 3 คู่ ใช้เส้น 3 เส้น ( ) แทน 1 พันธะสาม เช่น พันธะระหว่าง N กับ N ใน N2 , N กับ C ใน HCN


การเขียนสูตรสารประกอบโคเวเลนต์
1. ให้เรียงลำดับธาตุให้ถูกต้องตามหลักสากล ดังนี้คือ Si , C , Sb , As , P , N , H , Te , Se , S , At , I , Br , Cl , O , F ตามลำดับ
2. ในสารประกอบโคเวเลนต์ ถ้าอะตอมของธาตุมีจำนวนอะตอมมากกว่าหนึ่งให้เขียนจำนวนอะตอมด้วยตัวเลขแสดงไว้มุมล่างทางขวา ในกรณีที่ธาตุในสารประกอบนั้นมีเพียงอะตอมเดียวไม่ต้องเขียนตัวเลขแสดงจำนวนอะตอม
3. หลักการเขียนสูตรสารประกอบโคเวเลนต์ที่มีอะตอมของธาตุจัดเวเลนต์อิเล็กตรอน เป็นไปตามกฎออกเตต ใช้จำนวนอิเล็กตรอนคู่ร่วมพันธะของแต่ละอะตอมของธาตุคูณไขว้ เช่น


สูตรของสารประกอบของธาตุ H กับ S ; H และ S มีเวเลนต์อิเล็กตรอน 1 และ 6 ตามลำดับ ดังนั้น H และ S ต้องการอิเล็กตรอนคู่ร่วมพันธะจำนวน 1 และ 2 ตามลำดับ เพื่อให้แต่ละอะตอมของธาตุมีการจัดอิเล็กตรอนแบบก๊าซเฉื่อย
สูตรของสารประกอบของธาตุ S กับ C ; S และ C มีเวเลนต์อิเล็กตรอน 6 และ 4 ตามลำดับ ดังนั้น S และ C ต้องการอิเล็กตรอนคู่ร่วมพันธะจำนวน 2 และ 4 ตามลำดับ เพื่อให้แต่ละอะตอมของธาตุมีการจัดอิเล็กตรอนแบบก๊าซเฉื่อย






การเรียกชื่อสารประกอบโคเวเลนต์
1.สารประกอบของธาตุคู่ ให้อ่านชื่อธาตุที่อยู่ข้างหน้าก่อนแล้ว ตามด้วยชื่อธาตุที่อยู่หลังโดยเปลี่ยนเสียงพยางค์ท้ายเป็น ไอด์ ( ide)
2. ให้ระบุจำนวนอะตอมของแต่ละธาตุด้วยเลขจำนวนในภาษากรีกดังนี้
1 = mono- (มอนอ) 2 = di- (ได)
3 = tri- (ไตร) 4 = tetra- (เตตระ)
5 = penta- (เพนตะ) 6 = hexa- (เฮกซะ)
7 = hepta- (เฮปตะ) 8 = octa- (ออกตะ)
9 = mona- (โมนะ) 10 = deca- (เดคะ)

3. ถ้าสารประกอบนั้น อะตอมของธาตุแรกมีเพียงอะตอมเดียวไม่ต้องระบุจำนวนอะตอมของธาตุนั้น แต่ถ้าธาตุข้างหลังในสารประกอบใด ถึงแม้มีเพียงหนึ่งอะตอมก็ต้องระบุจำนวนอะตอมด้วยคำว่า “มอนอ” เสมอ เช่น
N2O3 อ่านว่า ไดไนโตรเจนไตรออกไซด์
PCl5 อ่านว่า ฟอสฟอรัสเพนตะคลอไรด์
CO อ่านว่า คาร์บอนมอนอกไซด์
P2O5 อ่านว่า ไดฟอสฟอรัสเพนตะออกไซด์
ที่มา school.obec.go.th/banluang/Vit/Covo/COVO.htm

การเกิดพันธะไอออนิก

พันธะไอออนิก (Ionic bond) คือ แรงยึดเหนี่ยวที่เกิดในสาร โดยที่อะตอมของธาตุที่มีค่าพลังงานไอออไนเซชันต่ำ ให้เวเลนต์อิเล็กตรอนแก่อะตอมของธาตุที่มีค่าพลังงานไอออนไนเซชันสูง กลายเป็นไอออนที่มีประจุบวกและประจุลบ เมื่อไอออนทั้งสองเข้ามาอยู่ใกล้กันจะเกิดแรงดึงดูดทางไฟฟ้าที่แข็งแรงระหว่างประจุไฟฟ้าตรงข้ามเหล่านั้น ทำให้ไอออนทั้งสองยึดเหนี่ยวกันด้วย พันธะเคมีที่เรียกว่า “พันธะไอออนิก”
ตัวอย่างเช่น โครงสร้างของผลึกโซเดียมคลอไรด์เป็นของแข็ง รูปลูกบาศก์ ใสไม่มีสีในผลึก มีโซเดียมไอออนสลับกับคลอไรด์ไอออน เป็นแถว ๆ ทั้งสามมิติ มีลักษณะคล้ายตาข่าย โดยที่แตละไอออนจะมีไอออนต่างชนิดล้อมรอบอยู่ 6 ไอออน ดังรูป 2 รูป ข้างล่างดังนี้




โครงผลึกของสารประกอบโซเดียมคลอไรด์



แสดงไอออนในผลึก NaCl แต่ละไอออนถูกล้อมรอบด้วยไอออนตรงข้าม 6 ไอออน
เนื่องจากโลหะมีค่าพลังงานไอออไนเซชันต่ำ และอโลหะมีค่าพลังงานไอออไนเซชันสูง ดังนั้นพันธะไอออนิกจึงเกิดระหว่างธาตุโลหะ และอโลหะได้ดี กล่าวคือ อะตอมของโลหะให้เวเลนต์อิเล็กตรอนกับอะตอมของอโลหะ แล้วเกิดไอออนบวกของโลหะ และไอออนลบของอโลหะ ไอออนทั้งสองจะส่งแรงดึงดูดระหว่างประจุบวกและลบ เกิดเป็นพันธะไอออนิก และการที่โลหะให้เวเลนต์อิเล็กตรอนแก่อโลหะ เพื่อปรับให้มีเวเลนต์อิเล็กตรอนเป็นแปด แบบก๊าซเฉื่อย ส่วนอโลหะรับเวเลนต์อิเล็กตรอนมานั้นก็เพื่อปรับตัวเองให้เสถียรแบบก๊าซเฉื่อยเช่นกัน ไอออนบวกกับไอออนลบจึงดึงดูดกันด้วยแรงดึงดูดระหว่างประจุไฟฟ้าเกิดเป็นสารประกอบไอออนิก (Ionic compound)

1. การเขียนสูตรสารประกอบไอออนิก
การเขียนสูตรของสารประกอบไอออนิกใช้หลักดังนี้
1. เขียนไอออนบวกของโลหะหรือกลุ่มไอออนบวกไว้ข้างหน้า ตามด้วยไอออนลบของอโลหะ หรือกลุ่มไอออนลบ ยกเว้นสารประกอบไอออนิกที่เป็นเกลืออะซิเตต (CH3COO-) จะเขียนกลุ่มไอออนลบไว้ก่อนแล้วตามด้วยไอออนบวกของโลหะ เช่น CH3COONa , (CH3COO)2Ca
2. ไอออนบวกและไอออนลบ จะรวมกันในอัตราส่วนที่ทำให้ผลรวมของประจุเป็นศูนย์ ดังนั้นจึงต้องหาตัวเลขมาคูณกับจำนวนประจุบนไอออนบวก และไอออนลบให้มีจำนวนประจุเท่ากัน แล้วใส่ตัวเลขเหล่านั้นไว้มุมขวาล่างของแต่ละไอออน ซึ่งทำได้โดยใช้จำนวนประจุบนไอออนบวกและไอออนลบคูณไขว้กัน

2. การเรียกชื่อสารประกอบไอออนิก
การเรียกชื่อสารประกอบไอออนิกมีหลักเกณฑ์ดังนี้
1. สารประกอบธาตุคู่ (Binary compound) ถ้าสารประกอบเกิดจาก ธาตุโลหะที่มีไอออนได้ชนิดเดียวรวมตัวกับอโลหะ ให้อ่านชื่อโลหะที่เป็นไอออนบวก แล้วตามด้วยชื่ออโลหะที่เป็นไอออนลบโดยลงเสียงพยางค์ท้ายด้วย ไอด์ (ide) เช่น
ออกซิเจน เปลี่ยนเป็น ออกไซด์ (oxide)
ไฮโดรเจน เปลี่ยนเป็น ไฮไดรด์ (hydride)
คลอรีน เปลี่ยนเป็น คลอไรด์ (chloride)
ไอโอดีน เปลี่ยนเป็น ไอโอไดด์ (iodide)

ตัวอย่าง การอ่านชื่อสารประกอบไอออนิกธาตุคู่
NaCl อ่านว่า โซเดียมคลอไรด์
CaI2 อ่านว่า แคลเซียมไอโอไดด์
KBr อ่านว่า โพแทสเซียมโบรไมด์
NH4Cl อ่านว่า แอมโมเนียมคลอไรด์

ถ้าสารประกอบที่เกิดจากธาตุโลหะเดียวกันที่มีไอออนได้หลายชนิด รวมตัวกับอโลหะ ให้อ่านชื่อโลหะที่เป็นไอออนบวกแล้วตามด้วยค่าประจุของไอออนโลหะโดยวงเล็บเป็นเลขโรมัน แล้วตามด้วยอโลหะที่เป็นไอออนลบโดยเปลี่ยนเสียงพยางค์ท้ายเป็นไอด์ (ide) เช่น
Fe เกิดไอออนได้ 2 ชนิด คือ Fe2+ และ Fe3+
FeCl2 อ่านว่า ไอร์ออน (II) คลอไรด์
FeCl3 อ่านว่า ไอร์ออน (III) คลอไรด์
Cu เกิดไอออนได้ 2 ชนิด คือ Cu+ และ Cu2+
Cu2S อ่านว่า คอปเปอร์ (I) ซัลไฟด์
CuS อ่านว่า คอปเปอร์ (II) ซัลไฟด์

2. สารประกอบธาตุสามหรือมากกว่า ถ้าสารประกอบเกิดจากไอออนบวกของโลหะ หรือกลุ่มไอออนบวกรวมตัวกับ กลุ่มไอออนลบ ให้อ่านชื่อไอออนบวกของโลหะ (โลหะนั้นเกิดไอออนบวกได้ชนิดเดียว) หรือกลุ่มไอออนบวก แล้วตามด้วยชื่อกลุ่มไอออนลบ เช่น
Na2SO4 อ่านว่า โซเดียมซัลเฟต
CaCO3 อ่านว่า แคลเซียมคาร์บอเนต
KNO3 อ่านว่า โพแทสเซียมไนเตรต
Ba(OH)2 อ่านว่า แบเรียมไฮดรอกไซด์
(NH4)3PO4 อ่านว่า แอมโมเนียมฟอสเฟต

ถ้าสารประกอบเกิดจากโลหะที่เกิดไอออนได้หลายชนิดรวมตัวกับกลุ่มไอออนลบ ให้อ่านชื่อไอออนบวกของโลหะแล้ววงเล็บค่าประจุของไอออนบวกนั้น แล้วจึงอ่านชื่อกลุ่มไอออนลบตามหลัง เช่น
Cr เกิดไอออนได้ 2 ชนิด คือ Cr2+ กับ Cr3+
CrSO4 อ่านว่า โครเมียม (II) ซัลเฟต
Cr2 (SO4)3 อ่านว่า โครเมียม (III) ซัลเฟต
Hg เกิดไอออนได้ 2 ชนิดคือ Hg22+ (Hg+) และ Hg2+
Hg2(NO3)2 อ่านว่า เมอคิวรี (I) ไนเตรต
Hg(NO3)2 อ่านว่า เมอคิวรี (II) ไนเตรต
ที่มา school.obec.go.th/banluang/Vit/Covo/COVO.htm


พันธะไฮโดรเจน

พันธะไฮโดรเจนระหว่างโมเลกุลของน้ำ ซึ่งในรูปแทนด้วยเส้นดำ ส่วนเส้นแดงเป็นพันธะโควาเลนต์ที่ยึดเกาะกันระหว่าง ออกซิเจน (สีแดง) และ ไฮโดรเจน (สีน้ำเงิน)
พันธะไฮโดรเจน (อังกฤษ: Hydrogen bond) เป็นแรงยึดเหนี่ยวระหว่างโมเลกุลโควาเลนต์ ที่มีขั้วรุนแรง มีความแข็งแรงมากกกว่าแรงระหว่างโมเลกุลอื่นๆ แต่แรงยึดเหนี่ยวนี้มีความแข็งแรงน้อยกว่าพันธะโควาเลนตและพันธะไอออนิกอยู่มาก นอกจากนี้ ในโมเลกุลขนาดใหญ่ เช่น โปรตีน หรือ กรดนิวคลีอิก ก็อาจมีพันธะไฮโดรเจนภายในโมเลกุลได้
เหตุที่เรียกแรงยึดเหนี่ยวนี้ว่าพันธะไฮโดรเจน เพราะว่าโมเลกุลที่จะเกิดพันธะไฮโดรเจนนั้น จะมีธาตุไฮโดรเจนที่เกิดพันธะโควาเลนต์กับธาตุที่มีอิเล็กโตรเนกาทิวิตีสูง ได้แก่ ไนโตรเจน ออกซิเจน และฟลูออรีน เกิดแรงดึงดูดกับธาตุเหล่านี้ของอีกโมเลกุลหนึ่ง โดยธาตุเหล่านี้จะดึงดูดกลุ่มหมอกอิเล็กตรอน มาอยู่ที่อะตอมเหล่านั้น จนทำให้เกิดสภาพขั้วบวกที่อะตอมของไฮโดรเจน และดึงดูดกับอิเล็กตรอนคู่โดดเดี่ยวของอีกโมเลกุลหนึ่งอย่างรุนแรงเกิดพันธะไฮโดรเจนขึ้น

ที่มา th.wikipedia.org/wiki/พันธะเคมี







ตารางธาตุ

ตารางธาตุ
จากวิกิพีเดีย สารานุกรมเสรี


ดมีตรี เมนเดเลเยฟ บิดาแห่งตารางธาตุ



ตารางธาตุ คือ ตารางที่ใช้แสดงธาตุเคมี คิดค้นขึ้นโดยนักเคมีชาวรัสเซีย ดมีตรี เมนเดเลเยฟ ในปี พ.ศ. 2412 จากการสังเกตว่าเมื่อนำธาตุต่างๆมาเรียงตัวลำดับเลขอะตอม คุณสมบัติต่าง ๆ ของธาตุที่นำมาเรียงนั้นจะมีลักษณะคล้ายกันเป็นช่วง ๆ ซึ่งในปัจจุบันตารางธาตุได้เป็นส่วนหนึ่งในการเรียนการสอนวิชาเคมีด้วย


ประวัติศาสตร์ของตารางธาตุ
เริ่มต้นจาก จอห์น นิวแลนด์ส ได้พยายามเรียงธาตุตามมวลอะตอม แต่เขากลับทำให้ธาตุที่มีสมบัติต่างกันมาอยู่ในหมู่เดียวกัน นักเคมีส่วนมากจึงไม่ยอมรับตารางธาตุของนิวแลนด์ส ต่อมา ดมีตรี เมนเดเลเยฟ จึงได้พัฒนาโดยพยายามเรียงให้ธาตุที่มีสมบัติเหมือนกันอยู่ในหมู่เดียวกัน และเว้นช่องว่างไว้สำหรับธาตุที่ยังไม่ค้นพบ พร้อมกันนั้นเขายังได้ทำนายสมบัติของธาตุใหม่ไว้ด้วย โดยใช้คำว่า เอคา (Eka) นำหน้าชื่อธาตุที่อยู่ด้านบนของธาตุที่ยังว่างอยู่นั้น เช่น เอคา-อะลูมิเนียม (ต่อมาคือธาตุแกลเลียม) เอคา-ซิลิคอน (ต่อมาคือธาตุเจอร์เมเนียม) แต่นักเคมีบางคนในยุคนั้นยังไม่แน่ใจ เนื่องจากว่าเขาได้สลับที่ธาตุบางธาตุโดยเอาธาตุที่มีมวลอะตอมมากกว่ามาไว้หน้าธาตุที่มีมวลอะตอมน้อยกว่า ดมีตรีได้อธิบายว่า เขาต้องการให้ธาตุที่มีสมบัติเดียวกันอยู่ในหมู่เดียวกัน เมื่อดมีตรีสามารถทำนายสมบัติของธาตุได้อย่างแม่นยำ และตารางธาตุของเขาไม่มีข้อน่าสงสัย ตารางธาตุของดมีตรีก็ได้รับความนิยมจากนักเคมีในสมัยนั้นเป็นต้นมา


ตารางธาตุแบบมาตรฐาน




ภาพอาจมีลิขสิทธิ์
เป็นภาพจาก: http://www.cmw.ac.th/elibrary/fileselibrary/Science/phuangphet002/sec01p07.html



ข้อแนะนำในการจดจำธาตุในตารางธาตุ
หมู่ 1A ลิเทียม (Lithium) โซเดียม (Sodium - Natrium) โพแทสเซียม (Potassium - Kalium) รูบิเดียม (Rubidium) ซีเซียม (Cesium) แฟรนเซียม (Francium)
หมู่ 2A เบริลเลียม (Beryllium) แมกนีเซียม (Magnesium) แคลเซียม (Calcium) สตรอนเทียม (Strontium) แบเรียม (Barium) เรเดียม (Radium)
หมู่ 3A โบรอน (Boron) อะลูมิเนียม (Aluminium) แกลเลียม (Gallium) อินเดียม (Indium) แทลเลียม (Thallium)
หมู่ 4A คาร์บอน (Carbon) ซิลิกอน (Silicon) เจอร์เมเนียม (Germanium) ดีบุก (Tin - Stannum) ตะกั่ว (Lead - Plumbum)
หมู่ 5A ไนโตรเจน (Nitrogen) ฟอสฟอรัส (Phosphorous) อะซินิค (สารหนู) (Arsenic) พลวง (Antimony - Stibium) บิสมัท (Bismuth)
หมู่ 6A ออกซิเจน (Oxygen) ซัลเฟอร์ (กำมะถัน) (Sulfur) ซีลีเนียม (Selenium) เทลลูเรียม (Telllurium) โพโลเนียม (Polonium)
หมู่ 7A ฟลูออรีน (Fluorine) คลอรีน (Chlorine) โบรมีน (Bromine) ไอโอดีน (Iodine) แอสทาทีน (Astatine)
หมู่ 8A ฮีเลียม (Helium) นีออน (Neon) อาร์กอน (Argon) คริปตอน (Krypton) ซีนอน (Xenon) เรดอน (Radon)
ยกเว้น ไฮโดรเจน เพราะยังถกเถียงกันอยู่ว่าจะจัดลงไปที่หมู่ 1 หรือ 7 ดี เพราะคุณสมบัติเป็นกึ่ง ๆ กัน ระหว่าง 1A กับ 7A และธาตุประเภททรานซิชัน โดยทั่วไป ไม่แนะนำให้จำ แต่อาศัยดูตารางเอา และควรจำคุณสมบัติของธาตุที่สำคัญ ๆ ให้ได้ หรืออาจจะใช้หลักการในการท่องให้ง่ายขึ้น เช่นการใช้ตัวย่อของแต่ละคำมารวมกันเป็นประโยคที่จำง่าย ๆ ซึ่งจะทำให้จำได้ไวขึ้น


แหล่งกำเนิดของธาตุในจักรวาล
ไฮโดรเจนและฮีเลียมเกิดเริ่มแรกในจักรวาลหลังบิกแบง
ธาตุตัวที่ 3 คือลิเทียม ถึงตัวที่ 26 คือ เหล็กเกิดจากภาวะอัดแน่นในดวงดาว
ธาตุตัวที่หนักกว่าเหล็กจนถึงยูเรเนียมเกิดจากดาวระเบิด หรือปรากฏการณ์นิวเคลียร์ฟิวชั่นในดาวฤกษ์ (กรณีหลังจะได้กัมมันตภาพฯ เป็นส่วนมาก)

อ้างอิง
S01 The periodic table of the elements.

แหล่งข้อมูลอื่น
ตารางธาตุในปัจจุบัน ข้อมูลจากภาควิชาฟิสิกส์ มหาวิทยาลัยราชมงคล
ตารางธาตุในปัจจุบัน ข้อมูลจากเครือข่ายคอมพิวเตอร์เพื่อโรงเรียนไทย
ตารางธาตุแบบอินเตอร์แอกทีฟ

วันอาทิตย์ที่ 12 กรกฎาคม พ.ศ. 2552

ประวัติโครงสร้างอะตอม

ประวัติ อะตอม
ประมาณ 400 ปีก่อนคริสตศักราช - เดโมคริตุส นำเสนอแนวความคิดแรกเกี่ยวกับอะตอม นักปรัชญากรีก
เดโมคริตุส (Democritus) และ ลุยซิปปุส (Leucippus) ได้เสนอทฤษฎีแรกเกี่ยวกับอะตอม ว่า อะตอมแต่ละอะตอมนั้นมีรูปร่างแตกต่างกัน ในลักษณะเดียวกับก้อนหิน ซึ่งรูปร่างนี้เป็นตัวกำหนดคุณสมบัติของอะตอม
1803 -
จอห์น ดัลตัน (John Dalton) - พิสูจน์ว่าอะตอมนั้นมีอยู่จริง
จอห์น ดัลตัน ได้พิสูจน์ว่าสสารประกอบขึ้นจากอะตอม แต่ก็ไม่ได้รู้ว่าอะตอมนั้นมีรูปร่างอย่างไร ซึ่งงานของดัลตันนี้ขัดแย้งกับ ทฤษฎีของการแบ่งแยกได้อย่างไม่สิ้นสุด (infinite divisibility) ซึ่งได้กล่าวว่า สสารนั้นสามารถถูกแบ่งเป็นส่วนย่อยได้เสมอ อย่างไม่สิ้นสุด
1897 -
โจเซฟ จอห์น ทอมสัน (Joseph John Thomson) - ค้นพบอิเล็กตรอน
ความเชื่อที่ว่า อะตอม เป็นส่วนที่เล็กที่สุดของสาร นั้นคงอยู่จนกระทั่งได้มีการพิสูจน์ให้เห็นว่าอะตอมนั้นยังประกอบด้วยอนุภาคที่เล็กกว่า โดย
ทอมสัน นั้นเป็นผู้ค้นพบอิเล็กตรอน ซึ่งแสดงให้เห็นว่าอะตอมนั้นยังสามารถแบ่งแยกเป็นส่วนย่อยได้อีก
1898 - Marie und Pierre Curie - กัมมันตภาพรังสี
1900 - Ludwig Boltzmann - ทฤษฎีปรมาณู
1900 - Max Planck - ควอนตัม
1906 -
เออร์เนสท์ รัทเธอร์ฟอร์ด (Ernest Rutherford) - นิวเคลียส
รัทเธอร์ฟอร์ดได้พิสูจน์ให้เห็นว่าอะตอมนั้นมี นิวเคลียสซึ่งมีประจุไฟฟ้าเป็นบวก
1913 - Niels Bohr - แบบจำลองแบบเป็นระดับชั้น
1929 - Ernest O. Lawrence - เครื่องเร่งอนุภาค ไซโคลตรอน (cyclotron)
1932 - Paul Dirac und David Anderson - แอนตี้แมทเทอร์
1964 - Murray Gell-Mann - ควาร์ก
1995 - Eric Cornell und Carl Wieman - โบส-ไอน์สไตน์ คอนเดนเสท
2000 - CERN - โบซอนฮิกส์
2002 - Brookhaven - สารประหลาด

จอห์น ดอลตัน เป็นคนแรกที่เสนอแนวคิดเกี่ยวกับอะตอม สรุปว่า
1. สารประกอบด้วยอนุภาคขนาดเล็ก เรียกว่า อะตอม แบ่งแยกไม่ได้ และสร้างขึ้นหรือทำลายให้สูญหายไปไม่ได้ 2. อะตอมของธาตุชนิดเดียวกัน จะมีมวลเท่ากัน มีสมบัติเหมือนกัน แต่จะแตกต่างจากอะตอมของธาตุอื่น ๆ

3. อะตอมของธาตุสองชนิดอาจรวมตัวกันด้วยอัตราส่วนต่าง ๆ กัน เกิดเป็นสารประกอบได้หลายชนิด ทอมสัน ทำการทดลองเกี่ยวกับการนำไฟฟ้าของก๊าซในหลอดรังสีแคโทด พบว่าไม่ว่าจะใช้ก๊าซใดบรรจุในหลอดหรือใช้โลหะใดเป็นแคโทด จะได้รังสีที่ประกอบด้วยอนุภาคที่มีประจุลบ พุ่งมาที่ฉากเรืองแสงเหมือนเดิม เมื่อคำนวณหาอัตราส่วนของประจุต่อมวล (e/m) ของอนุภาค จะได้ค่าคงที่ทุกครั้งเท่ากับ 1.76 x 108 คูลอมบ์ต่อกรัม สรุปว่า อะตอมทุกชนิดมีอนุภาคที่มีประจุลบเป็นองค์ประกอบ เรียกว่า อิเล็กตรอน
หลอดรังสีแคโทดที่มีขั้วไฟฟ้าในหลอดเพิ่มอีกสองขั้วเพื่อทำให้เกิดสนามไฟฟ้า

3. โกลดชไตน์ ดัดแปลงหลอดรังสีแคโทด เมื่อเปลี่ยนชนิดของก๊าซ พบว่า อนุภาคที่มีประจะบวกมีอัตราส่วนของประจุต่อมวลไม่คงที่ ถ้าใช้ก๊าซไฮโดรเจน จะได้อนุภาคบวกมีประจุเท่ากับประจุของอิเล็กตรอนจึงเรียกอนุภาคบวกว่า โปรตอน 4. มิลลิแกน ทำการทดลองหาค่าประจุของอิเล็กตรอน เท่ากับ 1.60 x 10-19 คูลอมบ์ และเมื่อนำไปคำนวณหามวล ของอิเล็กตรอน จะได้เท่ากับ 9.11 x 10-28 กรัม 5. รัทเทอร์ฟอร์ด, ไกเกอร์ และมาร์สเดน ยิงอนุภาคแอลฟาไปยังแผ่นทองคำบาง ๆ พบว่า อนุภาคส่วนใหญ่จะวิ่งเป็นเส้นตรงผ่านแผ่นทองคำ นาน ๆ ครั้งจะเบนไปจากแนวเส้นตรง และน้อยครั้งมากที่อนุภาคจะสะท้อนกลับมากระทบฉากบริเวณหน้าแผ่นทองคำ 6. เลขอะตอม คือ ตัวเลขที่แสดงจำนวนโปรตอน 7. เลขมวล คือ ผลรวมของจำนวนโปรตอนและนิวตรอน 8. ไอโซโทป คือ อะตอมต่าง ๆ ของธาตุเดียวกันที่มีเลขมวลต่าง ๆ เช่น 11H, 21H และ 31H 9. สัญลักษณ์นิวเคลียร์ วิธีเขียน เลขอะตอมไว้มุมล่างซ้าย และเลขมวลไว้มุมบนซ้ายของสัญลักษณ์ เช่น 23 11 Na 10. การจัดอิเล็กตรอนในอะตอม วิธีการใช้ในการหาข้อมูลเกี่ยวกับตำแหน่งของอิเล็กตรอนรอบนิวเคลียส คือ การศึกษาสเปกตรัมของสารหรือธาตุแสงเป็นคลื่นแม่เหล็กไฟฟ้า แสงที่มองเห็นได้มีความยาวคลื่น 400 - 700 นาโนเมตร แสงสีต่าง ๆ ในแถบสเปกตรัมของแสงได้แก่ ม่วง น้ำเงิน เขียว เหลือง ส้ม แดง
แสงสีม่วง มีความยาวคลื่นสั้นที่สุด แต่มีความถี่สูงที่สุด และมีพลังงานสูงสุดแสงสีแดง มีความยาวคลื่นมากที่สุด แต่มีความถี่ต่ำที่สุด และมีพลังงานต่ำสุด มักซ์ พลังค์ สรุปว่า พลังงานของคลื่น-แม่เหล็กไฟฟ้าจะเป็นสัดส่วนโดยตรงกับความถี่ของคลื่นนั้น
E = พลังงาน จูล (J)
h = ค่าคงที่ของพลังค์ มีค่า 6.625 x 10-34 จูลวินาที (Js)
= ความถี่ของคลื่นแม่เหล็กไฟฟ้า (Hz)
C = ความเร็วของคลื่นแม่เหล็กไฟฟ้าในสูญญากาศ = 3.0 x 108 m/s
= ความยาวคลื่น (m) (1 นาโนเมตร เท่ากับ 10-9 เมตร)
สเปกโตสโคป เป็นเครื่องมือสำหรับแยกสเปกตรัมของแสงขาว และตรวจเส้นสเปกตรัมของธาตุที่ถูกเผา การทดลองใช้ลวดนิโครมจุ่มลงในกรดไฮโดรลอริกเข้มข้น (HCI) แตะสารประกอบที่ต้องการทดสอบ นำไปเผาบนเปลวไฟ สังเกตสีของเปลวไฟ และใช้สเปกโตสโคปสังเกตสีของเส้นสเปกตรัม
1. สีของเปลวไฟ หรือเส้นสเปกตรัม เกิดจากส่วนที่เป็นโลหะ (ion +) ในสารประกอบชนิดนั้น ๆ
2. ธาตุแต่ละชนิด มีเส้นสเปกตรัมเป็นลักษณะเฉพาะตัวไม่ซ้ำกัน ลักษณะของเส้นสเปกตรัมจึงเป็นสมบัติเฉพาะตัวประการหนึ่งของธาตุ เส้นสีเขียวที่เห็นจากแสงไฟฟลูออเรสเซนต์ เกิดจาก ไอปรอท
2.1. การศึกษาเรื่องสเปกตรัมของสารหรือของธาตุ สรุปได้ว่า
2.1.1. เมื่ออิเล็กตรอนได้รับพลังงาน จึงขึ้นไปอยู่ในระดับพลังงานที่สูงขึ้น ทำให้อะตอมไม่เสถียร อิเล็กตรอนจึงคาย พลังงานเท่ากับพลังงานที่ได้รับเข้าไป พลังงานส่วนใหญ่ที่คายออกอยู่ในรูปของคลื่นแม่เหล็กไฟฟ้า ปรากฎเป็นเส้น สเปกตรัม
2.1.2. การเปลี่ยนระดับพลังงานของอิเล็กตรอน อาจมีการเปลี่ยนข้ามขั้นได้
2.1.3. อิเล็กตรอนในระดับพลังงานต่ำจะอยู่ใกล้นิวเคลียส
2.1.4. ระดับพลังงานต่ำอยู่ห่างกันมากกว่าระดับพลังงานสูง ระดับพลังงานยิ่งสูงขึ้นจะยิ่งอยู่ชิดกันมากขึ้น
2.2.. นีลส์ โบร์ สร้างแบบจำลองว่า อิเล็กตรอนในอะตอมวิ่งอยู่รอบนิวเคลียสเป็นชั้น ๆ หรือเป็นระดับพลังงานมีค่าพลังงานเฉพาะคล้าย ๆ กับวงโคจรของดาวเคราะห์รอบดวงอาทิตย์ ซึ่งแบบจำลองนี้ใช้ได้ดีกับอะตอมขนาดเล็กที่มีอิเล็กตรอนเดียว เช่น ไฮโดรเจนเท่านั้น


2.3 พลังงานไอออไนเซชัน (IE) คือ พลังงานปริมาณน้อยที่สุดที่ทำให้อิเล็กตรอนหลุดออกจากอะตอมในสถานะก๊าซ
Mg(g) + IE1 Mg+(g) + e- , Mg+(g) + IE2 Mg2(g) + e-
พลังงานไอออไนเซชันลำดับที่หนึ่ง ไม่ว่าจะเป็นของธาตุใดก็ตาม ล้วนมีค่าต่ำสุดเมื่อเทียบกับพลังงานไอออไนเซชัน ลำดับอื่น ๆ ของธาตุเดียวกัน เพราะอิเล็กตรอนที่หลุดออกไปตัวแรกได้รับแรงดึงดูดจากนิวเคลียสน้อยที่สุด
ค่าพลังงานไอออไนเซชันใช้เป็นเกณฑ์ในการจัดกลุ่มอิเล็กตรอนได้คำถาม กำหนดปฏิกิริยาต่อไปนี้
ก. Zn(s) Zn(g) ดูดพลังงาน 130 kj/mol
ข. Zn(s) Zn2+(aq) + 2e- ดูดพลังงาน 737 kj/mol
ค. Zn2+(g) Zn2+(aq) ดูดพลังงาน 2046 kj/mol
ผลรวมของค่าพลังงานไอออไนเซชันลำดับที่หนึ่ง และที่สองของสังกะสีเป็นเท่าใดในหน่วย kj/mol 1) 607 , 2) 1179 , 3) 1439 , *4) 2653 2.4 จำนวนอิเล็กตรอนที่มีได้มากที่สุดในแต่ละระดับพลังงาน = 2n2
อิเล็กตรอนในระดับพลังงานสูงที่สุดของแต่ละธาตุ เรียกว่า เวเลนซ์อิเล็กตรอน 3919 K มีการจัดอิเล็กตรอน เป็น 2, 8, 8, 1 (หมู่ 1 A คาบ 4) 2.5 แบบจำลองอะตอมแบบกลุ่มหมอก สรุปได้ว่า
2.5.1. การเคลื่อนที่ของอิเล็กตรอนไม่มีทิศทางแน่นอน บอกได้เพียงโอกาสที่จะพบอิเล็กตรอน ณ ตำแหน่
ต่าง ๆ เท่านั้น
2.5.2. โอกาสที่จะพบอิเล็กตรอนในแต่ละระดับพลังงานไม่เหมือนกัน ขึ้นกับจำนวนอิเล็กตรอนและระดับพลังงานของ อิเล็กตรอนนั้น
2.5.3. อิเล็กตรอนที่มีพลังงานต่ำอยู่ในบริเวณใกล้นิวเคลียสมากกว่าอิเล็กตรอนที่มีพลังงานสูง

อะตอม


แบบจำลองอะตอมของฮีเลียม (ไม่ใช่อัตราส่วนจริง)ภาพนิวเคลียสซึ่งมีโปรตอน 2 ตัว(สีแดง)
นิวตรอน 2 ตัว(สีเขียว) และ กลุ่มควันแสดงความน่าจะเป็นของตำแหน่ง(สีเทา)ของอิเล็กตรอน(สีเหลือง)
ประเภท
องค์ประกอบทางเคมีที่เล็กที่สุด

คุณสมบัติ

มวล:
หน่วยมวลอะตอม
ประจุไฟฟ้า:
0
คูลอมบ์
ขนาดเส้นผ่านศูนย์กลาง:
10pm to 100pm
เป็นโครงสร้างขนาดเล็กมากมองด้วยตาเปล่าไม่เห็น ที่พบได้ในสิ่งของทุก ๆ อย่างรอบตัวเรา อะตอมประกอบไปด้วยอนุภาค 3 ชนิด คือ:
อิเล็กตรอน ซึ่งมีประจุลบโปรตอน ซึ่งมีประจุบวกนิวตรอน ซึ่งไม่มีประจุ อิเล็กตรอน
อิเล็กตรอน (Electron) เป็น
อนุภาคที่มีประจุไฟฟ้าเป็นลบวิ่งอยู่รอบๆ นิวเคลียส โดยปกติ จำนวน อิเล็กตรอน ในอะตอมที่เป็นกลางทางไฟฟ้าจะมีเท่ากับจำนวน โปรตอน เช่น ไฮโดรเจนมีโปรตอน 1 ตัว และอิเล็กตรอน 1 ตัว ฮีเลียมมีโปรตอน 2 ตัว และอิเล็กตรอน 2 ตัว



โปรตอน
โปรตอน (Proton) คืออนุภาคที่มีประจุไฟฟ้าเป็นบวกอยู่ในนิวเคลียสหรือใจกลางของธาตุ ธาตุเดียวกันจะมีจำนวนโปรตอนเท่ากัน เช่น
ไฮโดรเจนเป็นธาตุตัวที่ 1 เบาที่สุดมีโปรตอนตัวเดียว โปรตอนเกิดจากควาร์ก up 2 และ down 1 มีประจุ +1.60x10^(-19)คูลอมบ์ มีน้ำหนัก 1.67x10^(-27) กิโลกรัม ฮีเลียมมี 2 ตัว เหล็กมี 26 ตัว ยูเรเนียมมี 92 ตัว


นิวตรอน (Neutron) เป็นอนุภาคที่เป็นกลางไม่มีประจุไฟฟ้าอยู่ในนิวเคลียสมีจำนวนใกล้เคียงกับโปรตอนแต่อาจแตกต่างกันได้เช่นในฮีเลียมมีนิวตรอน 2 ตัว เท่ากับโปรตอนแต่ในเหล็กมี 30 ตัว และในยูเรเนียมมีนิวตรอนถึง 146 ตัว นิวตรอนอาจเกิดจากการอัดอีเล็กตรอนกับโปรตอนดังเช่นในดาวฤกษ์มวลมาก นิวตรอนเกิดจากควาร์ก up 1 อนุภาค และ ควาร์ก down 2 อนุภาค มีน้ำหนัก 1.67x10^(-27)ซึ่งเท่ากัน
โปรตอน


อะตอมเป็นองค์ประกอบพื้นฐานทางเคมีซึ่งไม่เปลี่ยนแปลงตามปฏิกิริยาเคมี ธาตุที่พบได้ตามธรรมชาติบนโลกนี้นั้นมีปรากฏอยู่ประมาณ 90 ชนิดเท่านั้น (นอกเหนือจากนี้มี ธาตุบางชนิดเช่น
เทคนิเซียม และ แคลิฟอร์เนียม ที่พบได้ในซูเปอร์โนวา และธาตุที่เลขอะตอมสูง (มากกว่า 100 ขึ้นไป) ที่สามารถสังเคราะห์ได้จาก การนำอะตอมมาชนกันด้วยความเร็วสูง)
เราเรียกอะตอม สองอะตอมว่าเป็นธาตุเดียวกันก็ต่อเมื่อ อะตอมสองอันนั้นมีจำนวนโปรตอนเท่ากัน โดยทั่วไปแล้ว
ธาตุแต่ละธาตุไม่เหมือนกัน อะตอมของธาตุชนิดเดียวกันอาจมีจำนวนนิวตรอนที่แตกต่างกัน เราเรียกสองอะตอมที่มีจำนวนโปรตรอนเท่ากันแต่จำนวนนิวตรอนแตกต่างกันนั้นจะเรียกว่าเป็นไอโซโทป (isotope)
นอกจากธาตุที่เกิดตามธรรมชาติแล้ว ยังมีธาตุที่ถูกสร้างขึ้น แต่ธาตุเหล่านี้มักจะไม่เสถียร และ สลายไปเป็นธาตุอื่นที่เสถียร โดยกระบวนการสลายกัมมันตรังสี ตัวอย่างเช่น
Beta Decay, Double Beta Decay, Beta Capture, Gamma Decay และอื่น ๆ
ถึงแม้ว่าจะมีธาตุที่เกิดตามธรรมชาติเพียง 90 ชนิด อะตอมของธาตุเหล่านี้สามารถสร้าง
พันธะทางเคมี รวมกันเป็นโมเลกุล และองค์ประกอบชนิดอื่นๆ โมเลกุลเกิดจากการรวมตัวกันของอะตอมหลายอะตอม เช่น โมเลกุลของน้ำเกิดจากการรวมตัวกันของอะตอมไฮโดรเจน 2 อะตอม และ อะตอมออกซิเจน 1 อะตอม
เนื่องจากอะตอมเป็นสิ่งที่มีอยู่ไปทั่วทุกที่ จึงเป็นหัวข้อศึกษาที่ได้รับความสำคัญในหลายศตวรรษที่ผ่านมา หัวข้อวิจัยทางด้านอะตอมในปัจจุบันจะเน้นทางด้าน quantum effects เช่น
ของเหลวผลควบแน่นโบส-ไอน์สไตน์



โครงสร้าง

แบบจำลองของอะตอมที่ได้รับการยอมรับมากที่สุดคือ แบบจำลองเชิงคลื่น (wave model) ซึ่งพัฒนามาจาก แบบจำลองของบอหร์ (Bohr model) โดยได้รวมเอาการค้นพบ และ พัฒนาการทางด้าน กลศาสตร์ควอนตัม (quantum mechanics) เข้าไปด้วย
The electron orbital wavefunctions ของไฮโดรเจน (hydrogen) เลขควอนตัมหลัก (principal quantum number) อยู่ทางขวาของแถวในแนวนอนแต่ละแถวและเลขควอนตัมเชิงมุม (azimuthal quantum number) ถูกแทนด้วยตัวอักษร (s, p และ d) ด้านบนของแต่ละ- แถวในแนวตั้ง (สดมภ์ หรือ column)
แบบจำลองเชิงคลื่นอย่างง่าย (ของ อิเล็กตรอน หรือ อะตอมของไฮโดรเจน) ตั้งอยู่บนสมมติฐานว่า ความน่าจะเป็นที่จะพบ อนุภาค สามารถที่จะถูกเขียนได้ด้วย ฟังก์ชันคลื่น (
wavefunctions) ซึ่งจะต้อง สอดคล้องกับ สมการของชโรดิงเจอร์ (Schrodinger Equation) และหากอนุภาคนั้นเป็น อนุภาคสปินครึ่ง (เช่น อิเล็กตรอน, โปรตอน หรือ นิวตรอน) ฟังก์ชันคลื่นของ -อนุภาคนั้นต้องตกอยู่ภายใต้เงื่อนไข หลักการกีดกันของ เพาลี (Pauli Exclusion Principle) นั่นคือ ฟังก์ชันคลื่นต้องมีสมมาตรต่อต้าน (anti-symmetric) ภายใต้การสลับตำแหน่งของอนุภาคสองตัว
ซึ่งโดยสมมติฐานเหล่านี้ แบบจำลองเชิงคลื่นได้ ทำนาย ว่าอิเล็กตรอนของ ไฮโดรเจน นั้น
o สามารถมี
Orbital Angular Momentum เป็น จำนวนเท่าของ
o สามารถมี Energy Level นั้น Quantized (นั่นคือ มีค่าได้เพียงบางค่าเท่านั้น)
o วงโคจรแต่ละวงนั้นสามารถมีอิเล็กตรอนได้อย่างมาก 2 ตัว และถูกควบคุมด้วย เลขควอนตัม (quantum number) 3 ตัว คือ
principal, azimuthal, and magnetic
o อิเล็กตรอนแต่ละตัวนั้นจะมีเลขควอนตัมตัวที่ 4 เฉพาะตัว คือ
spin
การที่จะใช้แบบจำลองเชิงคลื่นกับ อะตอมที่ซับซ้อนกว่า อะตอมของไฮโดรเจน นั้นค่อนข้างยากต่อการคำนวณเชิงวิเคราะห์ (Analytical calculation) เนื่องจากต้องเพิ่ม อันตรกิริยา หลายแบบ เข้าไปใน สมการของชโรดิงเจอร์ ยกตัวอย่างเช่น
Spin-Orbit Coupling และ Electron-Electron interaction ซึ่งเป็นพจน์ที่ ไม่เป็นเชิงเส้น (Non-Linear) แต่การคำนวณเหล่านี้สามารถทำได้โดยใช้คอมพิวเตอร์ (computer) เช่น การคำนวณประมาณด้วยวิธีของฮาร์ทรี ฟ็อค (Hartree Fock method)

ขนาดอะตอม
ขนาดของอะตอมนั้นจะกำหนดได้ยาก เนื่องจากวงโคจรของอิเล็กตรอน (ความน่าจะเป็น) นั้น จะลดลงอย่างต่อเนื่องจนเป็นศูนย์นั่นคือ ไม่ว่าระยะทางจะไกลจากนิวเคลียสเท่าไรเรายังมี ความน่าจะเป็น (ที่ไม่เป็นศูนย์) ในการค้นพบอิเล็คตรอน ของอะตอมนั้น ในกรณีของอะตอมที่สามารถก่อตัวในรูปผลึกของแข็งนั้น ขนาดของอะตอมสามารถประมาณโดยใช้ระยะทางระหว่างอะตอมที่อยู่ติดกัน ส่วนอะตอมที่ไม่สามารถก่อตัวเป็นผลึกแข็งนั้น การหาขนาดจะใช้เทคนิคอื่นๆ รวมทั้งการคำนวณทางทฤษฎี โดยใช้ ค่าเฉลี่ยรากที่สอง (
Root mean square) ของอิเล็คตรอน ตัวอย่างเช่น ขนาดของอะตอมไฮโดรเจนนั้นจะประมาณ 1.2×10-10m เมื่อเทียบกันขนาดของ-โปรตอนซึ่งเป็นเพียงอนุภาคในนิวเคลียส ซึ่งมีขนาดประมาณ 0.87×10-15m จะเห็นได้ว่าอัตราส่วนระหว่างขนาดของอะตอมไฮโดรเจน และ นิวเคลียสนั้นจะประมาณ 100,000 อะตอมของธาตุต่างชนิดกันนั้นจะมีขนาดต่างกัน แต่สัดส่วนของขนาดก็จะอยู่ในช่วงประมาณไม่เกิน 2 เท่า เหตุที่ขนาดไม่เท่ากันนั้นเนื่องมาจากนิวเคลียสที่มีจำนวนประจุบวกไม่เท่ากัน นิวเคลียสที่มีประจุบวกมากก็จะ-สามารถดึงดูดอิเล็กตรอนให้เข้าใกล้จุดศูนย์กลางได้มากขึ้น
ธาตุและไอโซโทป
อะตอมโดยทั่วไปแล้วจะแบ่งตาม
เลขอะตอม ซึ่งเท่ากับจำนวนโปรตอนในอะตอม เลขอะตอมจะเป็นตัวระบุว่าอะตอมนั้นเป็นอะตอมของธาตุอะไร ตัวอย่างเช่น อะตอมของคาร์บอน จะมีโปรตอน 6 ตัว อะตอมที่มีเลขอะตอมเท่ากันจะมีคุณสมบัติร่วมทางกายภาพหลายอย่างและจะมีคุณสมบัติทางเคมีที่เหมือนกัน ในตารางธาตุอะตอมจะถูกเรียงตามค่าเลขอะตอม
เลขมวล หรือเรียก เลขมวลอะตอม หรือ เลขนิวคลีออน ของธาตุคือ จำนวนรวมของโปรตอน และ นิวตรอนในอะตอม โปรตอนและนิวตรอนแต่ละตัวนั้นจะมีมวล 1 amu จำนวนนิวตรอนในอะตอมนั้นไม่ได้เป็นตัวกำหนดชนิดของธาตุ ธาตุแต่ละชนิดนั้นจะมีจำนวนโปรตอนและอิเล็กตรอนที่แน่นอน แต่อาจมีจำนวนนิวตรอนที่แตกต่างไปเรียกว่า ไอโซโทปของธาตุการ-เรียกชื่อของไอโซโทป นั้นจะขึ้นต้นด้วยชื่อของธาตุและตามด้วยเลขมวล ตัวอย่างเช่น อะตอมของ คาร์บอน-14 มีโปรตอน 6 ตัว และ นิวตรอน 8 ตัว รวมเป็นเลขมวล 14
อะตอม ที่เรียบง่ายที่สุดคืออะตอมของ
ไฮโดรเจน มีเลขอะตอมเท่ากับ 1 และ มี โปรตอน 1 ตัว อิเล็กตรอน 1 ตัว ไอโซโทปของไฮโดรเจนซึ่งมีนิวตรอน 1 ตัวจะเรียกว่า ดิวทีเรียม หรือ ไฮโดรเจน-2 ไอโซโทปของไฮโดรเจนซึ่งมีนิวตรอน 2 ตัว จะเรียก ทริเทียม หรือ ไฮโดรเจน-3
เลขมวลอะตอมของธาตุที่ระบุในตารางธาตุ เป็นค่าเฉลี่ยมวลของไอโซโทปที่พบตามธรรมชาติ โดยเฉลี่ยแบบถ่วงน้ำหนักตามปริมาณที่ปรากฏในธรรมชาติ
แบบจำลองอะตอม
แบบจำลองอะตอมที่เป็นที่รู้จักดีมีอยู่ 5 แบบ คือ
1. แบบจำลองอะตอมของดอนตัลซึ่งมีลักษณะป็นทรงกลมและภายในว่างเปล่าไม่มีอะไรไม่สามารถทำให้สูญหายหรือเกิดขึ้นใหม่ได้
2. แบบจำลองอะตอมของทอมสันซึ่งภายในอะตอมมี
โปรตอนและมีอิเล็กตรอนเท่าๆกันกระจัดกระจายอยู่ทั่วภายในอะตอม
3. แบบจำลองอะตอมของรัทเทอร์ฟอร์ดซึ่งภายใน
นิวเคลียสของอะตอมมีโปรตอนและนิวตรอนอยู่ภายในส่วนบริเวณนอกมีอิเล็กตรอนวิ่งอยู่รอบๆอย่างอิสระ
4. แบบจำลองอะตอมของโบร์ซึ่งภายในอะตอมจะมี
ชั้นพลังงานและแบ่งเป็นชั้นได้7ชั้นคือ k l m n o p q ตามลำดับซึ่งแต่ละระดับชั้นพลังงานก็จะมีพลังงานที่ไม่เท่ากัน
5. แบบจำลองอะตอมของกลุ่มหมอก ภายในตรงกลางนิวเคลียสจะเป็นโปรตอนและนิวตรอน ส่วนภายนอกเป็นกลุ่มหมอก ถ้ากลุ่มหมอกตรงบริเวณไหนมากก็แสดงว่าตรงนั้นมีโอกาสที่จะมีอิเล็กตรอนอยู่มากกว่าที่อื่นๆ
แบบจำลองอะตอมที่ได้รับการยอมรับมากที่สุดในปัจจุบันคือแบบจำลองอะตอมของกลุ่มหมอก